精英家教网 > 高中数学 > 题目详情
在△ABC中AB=c,AC=b,D为线段BC上一点,且∠BAD=α,∠CAD=β,线段AD=l.
(1)求证:
sinα
b
+
sinβ
c
=
sin(α+β)
l

(2)若AB=4
2
,AC=4
,∠BAD=30°,∠CAD=45°,试求线段AD的长.
分析:(1)在△ABC中,S△ABC=S△ABD+S△BCD,再同除
1
2
bcl
即得结论;
(2)由(1)代入数据,可求线段AD的长.
解答:(1)证明:在△ABC中,S△ABC=S△ABD+S△BCD,得
1
2
bcsin(α+β)=
1
2
blsinβ+
1
2
clsinα

同除
1
2
bcl
即得
sinα
b
+
sinβ
c
=
sin(α+β)
l

(2)解:由(1)代入数据得
sin30°
4
+
sin45°
4
2
=
sin(30°+45°)
l
,解得l=
6
+
2
点评:本题考查三角形面积公式,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,∠C=90°,
AB
=(1,k)
AC
=(2,1)
,则k的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在△ABC中,∠C=90°,以BC上一点O为圆心,以OB为半径的圆交AB于点M,交BC于点N.
(1)求证:BA•BM=BC•BN;
(2)如果CM是⊙O的切线,N为OC的中点,当AC=3时,求AB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•重庆)如图,在△ABC中,∠C=90°,∠A=60°,AB=20,过C作△ABC的外接圆的切线CD,BD⊥CD,BD与外接圆交于点E,则DE的长为
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉兴二模)如图,在△ABC中,∠C=90°,AC=BC=3a,点P在AB上,PE∥BC交AC于E,PF∥AC交BC于F.沿PE将△APE翻折成△A′PE,使平面A′PE⊥平面ABC;沿PF将△BPF翻折成△B′PF,使平面B′PF⊥平面ABC.
(Ⅰ)求证:B′C∥平面A′PE.
(Ⅱ)若AP=2PB,求二面角A′-PC-E的平面角的正切值.

查看答案和解析>>

同步练习册答案