【题目】解关于x的不等式x2﹣(a+1)x+a>0(其中a∈R)
【答案】解:关于x的不等式x2﹣(a+1)x+a>0(其中a∈R)化为(x﹣a)(x﹣1)>0.
当a<1时,解集为{x|x<a或x>1}
当a=1时,解集为{x|x≠1}
当a>1时,解集为{x|x<1或x>a}
【解析】不等式x2﹣(a+1)x+a>0(其中a∈R)化为(x﹣a)(x﹣1)>0.对a与1的大小关系分类讨论即可得出.
【考点精析】利用解一元二次不等式对题目进行判断即可得到答案,需要熟知求一元二次不等式解集的步骤:一化:化二次项前的系数为正数;二判:判断对应方程的根;三求:求对应方程的根;四画:画出对应函数的图象;五解集:根据图象写出不等式的解集;规律:当二次项系数为正时,小于取中间,大于取两边.
科目:高中数学 来源: 题型:
【题目】已知直角三角形的两条直角边, , 为斜边上一点,沿将三角形折成直二面角,此时二面角的正切值为,则翻折后的长为( )
A. 2 B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两条不重合的直线和两个不重合的平面,若,则下列四个命题:①若,则;②若,则; ③若,则;④若,则,其中正确命题的个数是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设二次函数f(x)满足:对任意x∈R,都有f(x+1)+f(x)=2x2﹣2x﹣3
(1)求f(x)的解析式;
(2)若关于x的方程f(x)=a有两个实数根x1 , x2 , 且满足:﹣1<x1<2<x2 , 求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x+ ﹣4,g(x)=kx+3.
(1)当a=k=1时,求函数y=f(x)+g(x)的单调递增与单调递减区间;
(2)当a∈[3,4]时,函数f(x)在区间[1,m]上的最大值为f(m),试求实数m的取值范围;
(3)当a∈[1,2]时,若不等式|f(x1)|﹣|f(x2)|<g(x1)﹣g(x2)对任意x1 , x2∈[2,4](x1<x2)恒成立,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}中,a1=1,又数列{ }(n∈N*)是公差为1的等差数列.
(1)求数列{an}的通项公式an;
(2)求数列{an}的前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.
(1)写出C的参数方程;
(2)设直线l:2x+y﹣2=0与C的交点为P1 , P2 , 以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,E是BC的中点,F是棱CD上的动点,G为C1D1的中点,H为A1G的中点.
(1)当点F与点D重合时,求证:EF⊥AH;
(2)设二面角C1﹣EF﹣C的大小为θ,试确定点F的位置,使得sin θ= .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com