精英家教网 > 高中数学 > 题目详情
在长方体ABCD-A1B1C1D1中,AA1=AD=2AB.若E,F分别为线段A1D1,CC1的中点,则直线EF与平面ADD1A1所成角的正弦值为(  )
分析:取BB1中点为N,连接FN,取FN中点为M,连接A1M,A1F,易得∠MA1N为直线EF与平面ABB1A1所成角,解△MA1N即可求出直线EF与平面ABB1A1所成角的余弦值,进而可求正弦值.
解答:解:取BB1中点为N,连接FN,取FN中点为M,连接A1M,A1F 易得EF∥A1M,EF=A1M
∵A1F是EF在面A1ABB1上的投影.
∴∠MA1N为所求的角.令AB=1,
在△MA1N中,A1N=
2
A1M=
3

则cos∠MA1N=
6
3
,所以sin∠MA1N=
1-(
6
3
)2
=
3
3

故选C
点评:本题考查的知识点是直线与平面所成的角,其中构造出线面夹角的平面角是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在长方体ABCD-A'B'C'D'中,AB=
3
,AD=
3
,AA′=1,则AA′和BC′所成的角是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在长方体ABCD-A′B′C′D′中,用截面截下一个棱锥C-A′DD′,求棱锥C-A′DD′的体积与剩余部分的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海) 如图,在长方体ABCD-A′B′C′D′中,AB=2,AD=1,AA′=1.证明直线BC′平行于平面D′AC,并求直线BC′到平面D′AC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•青浦区二模)(理)在长方体ABCD-A'B'C'D'中,AB=2,AD=1,AA'=1.
求:
(1)顶点D'到平面B'AC的距离;
(2)二面角B-AC-B'的大小.(结果用反三角函数值表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知在长方体ABCD-A′B′C′D′中,点E为棱CC′上任意一点,AB=BC=2,CC′=1.
(Ⅰ)求证:平面ACC′A′⊥平面BDE;
(Ⅱ)若点P为棱C′D′的中点,点E为棱CC′的中点,求二面角P-BD-E的余弦值.

查看答案和解析>>

同步练习册答案