【题目】某超市计划按月订购一种饮料,每天进货量相同,进货成本每瓶3元,售价每瓶5元,每天未售出的饮料最后打4折当天全部处理完根据往年销售经验,每天需求量与当天最高气温单位:有关如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间,需求量为300瓶;如果最高气温低于20,需求量为100瓶为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得到下面的频数分布表:
最高气温 | ||||||
天数 | 2 | 16 | 36 | 25 | 7 | 4 |
以最高气温位于各区间的频率代替最高气温位于该区间的概率.
Ⅰ求六月份这种饮料一天的需求量单位:瓶的分布列,并求出期望EX;
Ⅱ设六月份一天销售这种饮料的利润为单位:元,且六月份这种饮料一天的进货量为单位:瓶,请判断Y的数学期望是否在时取得最大值?
【答案】(1)见解析(2)见解析
【解析】
Ⅰ由题意知X的可能取值为100,300,500,分别求出相应的概率,由此能求出X的分布列和.Ⅱ六月份这种饮料的进货量n,当时,求出,故当时,Y的数学期望达到最大值,最大值为520元;当时,,故当时,Y的数学期望达到最大值,最大值为480元由此能求出时,y的数学期望达到最大值,最大值为520元.
解:Ⅰ由题意知X的可能取值为100,300,500,
,
,
,
的分布列为:
X | 100 | 300 | 500 |
P |
.
Ⅱ由题意知六月份这种饮料的进货量n满足,
当时,
若最高气温不低于25,则,
若最高气温位于,则,
若最高气温低于20,则,
,
此时,时,Y的数学期望达到最大值,最大值为520元,
当时,
若最高气温不低于25,则,
若最高气温位于,则,
若最高气温低于20,则,
,
此时,时,Y的数学期望达到最大值,最大值为480元,
时,Y的数学期望值为:不是最大值,
时,y的数学期望达到最大值,最大值为520元.
科目:高中数学 来源: 题型:
【题目】已知直线l:过抛物线C:的焦点F,且与抛物线C交于点A、B两点,过A、B两点分别作抛物线准线的垂线,垂足分别为M、N,则下列说法错误的是
A. 抛物线的方程为B. 线段AB的长度为
C. D. 线段AB的中点到y轴的距离为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校用简单随机抽样方法抽取了30名同学,对其每月平均课外阅读时间(单位:小时)进行调查,茎叶图如图:
若将月均课外阅读时间不低于30小时的学生称为“读书迷”.
(1)将频率视为概率,估计该校900名学生中“读书迷”有多少人?
(2)从已抽取的7名“读书迷”中随机抽取男、女“读书迷”各1人,参加读书日宣传活动.
(i)共有多少种不同的抽取方法?
(ii)求抽取的男、女两位“读书迷”月均读书时间相差不超过2小时的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某电子科技公司由于产品采用最新技术,销售额不断增长,最近个季度的销售额数据统计如下表(其中表示年第一季度,以此类推):
季度 | |||||
季度编号x | |||||
销售额y(百万元) |
(1)公司市场部从中任选个季度的数据进行对比分析,求这个季度的销售额都超过千万元的概率;
(2)求关于的线性回归方程,并预测该公司的销售额.
附:线性回归方程:其中,
参考数据:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线,点与抛物线的焦点关于原点对称,动点到点的距离与到点的距离之和为4.
(1)求动点的轨迹;
(2)若,设过点的直线与的轨迹相交于两点,当的面积最大时,求直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com