精英家教网 > 高中数学 > 题目详情
19.若函数f(x)的定义域是(0,2],则函数f(2x-1)的定义域是$(\frac{1}{2}$,$\frac{3}{2}]$.

分析 f(x)的定义域是(0,2],由0<2x-1≤2求解x的范围得函数f(2x-1)的定义域.

解答 解:∵函数f(x)的定义域是(0,2],
∴由0<2x-1≤2,解得$\frac{1}{2}<x≤\frac{3}{2}$.
即函数f(2x-1)的定义域是$(\frac{1}{2}$,$\frac{3}{2}]$.
故答案为:$(\frac{1}{2}$,$\frac{3}{2}]$.

点评 本题考查函数的定义域及其求法,关键是掌握该类问题的解决方法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.某种鲜花进价每束2.5元,售价每束5元,若卖不出,则以每束1.6元的价格处理掉,某节日鲜花的需求量X(单位:束)的分布列为
X200300400500
P0.200.350.300.15
(Ⅰ)若进鲜花400束,是写出销售量S(单位:束)的分布列,并求利润Y的均值.
(Ⅱ)若进鲜花n束(300<n≤500),求n取何值时可使利润Y的均值最大?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x>1}\\{{3}^{x},x≤1}\end{array}\right.$,则f(2)+f(-2)=$\frac{37}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求函数y=log3(x2-2x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求函数f(x)=$\sqrt{2{x}^{2}+x-3}+lo{g}_{3}(3+2x-{x}^{2})$的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=4x2-kx-8在[1,4]上具有单调性,则实数k的取值范围是(  )
A.(-∞,4]∪[16,+∞)B.[4,16]C.(-∞,8]∪[32,+∞)D.[8,32]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=x2+4(a-1)x-3在区间[1,3]上是减函数,则a的取值范围是 (  )
A.(-∞,-$\frac{1}{2}$]B.(0,$\frac{2}{3}$]C.(-∞,$\frac{2}{5}$]D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知等差数列{an}的首项与公差相等,{an}的前n项的和记作Sn,且S20=840.求数列{an}的首项a1及通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知sinα=$\frac{1}{2}$+cosα,且α∈(0,$\frac{π}{2}$),则sinαcosα=$\frac{3}{8}$,$\frac{cos2α}{sin(α-\frac{π}{4})}$的值为-$\frac{\sqrt{14}}{2}$.

查看答案和解析>>

同步练习册答案