精英家教网 > 高中数学 > 题目详情
如图,已知AB是⊙O的直径,CD是⊙O的切线,C为切点,AD⊥CD交⊙O于点E,连接AC、BC、OC、CE,延长AB交CD于F.
(1)证明:BC=CE;
(2)证明:△BCF~△EAC.
考点:相似三角形的性质,与圆有关的比例线段
专题:选作题,立体几何
分析:(1)先证明OC⊥CD,可得OC∥AD,∠OCA=∠CAE,再证明∠OAC=∠OCA,可得∠OAC=∠CAE,即可证明BC=CE;
(2)证明△BCF~△EAC,只需证明∠FCB=∠CAE,∠FBC=∠CEA即可.
解答: 证明:(1)∵CD为圆O的切线,C为切点,AB为圆O的直径,
∴OC⊥CD…(1分)
又AD⊥CD,∴OC∥AD,∴∠OCA=∠CAE…(3分)
又OC=OA,∴∠OAC=∠OCA,
∴∠OAC=∠CAE,∴BC=CE…(5分)
(2)由弦切角定理可知,∠FCB=∠OAC,
∴∠FCB=∠CAE,
∵四边形ABCE为圆O的内接四边形,
∴∠ABC+∠CEA=180°…(8分)
又∠ABC+∠FBC=180°,
∴∠FBC=∠CEA,
∴△BCF∽△EAC…(10分)
点评:本题考查三角形相似的证明,考查圆的切线的性质,考查弦切角定理,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

a
b
=-9,|
a
|=3,<
a
b
>=
3
,则|
b
|=(  )
A、3B、6C、9D、12

查看答案和解析>>

科目:高中数学 来源: 题型:

心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学(男30女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如右表:(单位:人)
几何题代数题总计
男同学22830
女同学81220
总计302050
(1)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?
(2)经过多次测试后,甲每次解答一道几何题所用的时间在5~7分钟,乙每次解答一道几何题所用的时间在6~8分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率.
(3)现从选择做几何题的8名女生中任意抽取两人对她们的答题情况进行全程研究,记甲、乙两女生被抽到的人数为 X,求 X的分布列及数学期望 EX.
附表及公式
P(k2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线方程为3x+4y+k=0,圆的方程为x2+y2-6x+5=0.
(1)若直线过圆心,则k=
 

(2)若直线和圆相切,则k=
 

(3)若直线和圆相交,则k的取值范围为:
 

(4)若直线和圆相离,则k的取值范围为:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知线性变化T把点(1,-1)变成了(1,0),把点(1,1)变成了点(0,1).
(1)求变换T所对应的矩阵M;
(2)求直线y=-1在变换T的作用下得到直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

平面α截球 O的球面得圆 M,过圆心 M的平面β与α的夹角为
π
6
,且平面β截球 O的球面得圆 N.已知球 O的半径为5,圆 M的面积为9π,则圆 N的半径为(  )
A、3
B、
13
C、4
D、
21

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的方程为
x2
m
+
y2
2m-1
=1
,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前五项是一个以-2为首项,以3为公差的等差数列,从第五项起数列{an}成等比数列,若Sn为数列{an}的前n项和,且
lim
n→∞
Sn=40,求
(1)数列{an}的通项公式
(2)数列{an}的前n项和Sn的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对的边分别为a,b,c,已知sin
C
2
=
10
4

(1)求cosC的值:
(2)若△ABC的面积为△,且sin2A+sin2B=
13
16
sin2C,求△ABC的周长.

查看答案和解析>>

同步练习册答案