精英家教网 > 高中数学 > 题目详情
17.已知集合M={x|x2-2x<0},N={x|x-1>0},则M∩N=(  )
A.{x|1<x<2}B.{x|0<x<1}C.{x|x>2}D.{x|x<0}

分析 先化简集合M、N,再求它们的交集.

解答 解:集合M={x|x2-2x<0}={x|0<x<2},
N={x|x-1>0}={x|x>1};
所以M∩N={x|1<x<2}.
故选:A.

点评 本题考查了集合与一元二次不等式的解法问题,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知点P是抛物线y2=4x上一点,设点P到此抛物线准线的距离是d1,到直线x+2y-12=0的距离为d2,则d1+d2的最小值是$\frac{11\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设 f(x)是定义在[a-1,2]上偶函数,则f(x)=ax2+bx+1在[-2,0]上是(  )
A.增函数B.减函数
C.先增后减函数D.与a,b有关,不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{3}}}{2}$,四个顶点构成的四边形的面积为4,过原点的直线l(斜率不为零)与椭圆C交于A,B两点,F1,F2为椭圆的左、右焦点,则四边形AF1BF2的周长为(  )
A.4B.$4\sqrt{3}$C.8D.$8\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若△ABC的内角A,B,C所对的边分别是a、b、c,已知2bsin2A=asinB,且b=2,c=3,则a等于(  )
A.$\sqrt{6}$B.$\sqrt{10}$C.2$\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x+1)是定义在R上的奇函数,若对于任意给定的不等实数x1,x2不等式(x1-x2)[f(x1)-f(x2)]<0恒成立,则不等式f(2x-3)>0的解集为(  )
A.(0,+∞)B.(1,+∞)C.(2,+∞)D.(-∞,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax3+bx2-x+c(a,b,c∈R且a≠0).
(1)若a=1,b=1,求函数f(x)的单调区间;
(2)若存在实数x1,x2(x1≠x2)满足f(x1)=f(x2),是否存在实数a,b,c,使f(x)在$\frac{{x}_{1}+{x}_{2}}{2}$处的切线斜率为0,若存在,求出一组实数a,b,c,否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知Sn为等差数列{an}的前n项和,a5=2,an-1+an+1=a5an(n≥2)且a3是a1与-$\frac{8}{5}$的等比数列.
(1)求数列{an}的通项公式;
(2)若a1为整数,bn=$\frac{n}{(2{S}_{n}+23n)(n+1)}$,求数列{bn}前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.由曲线y=x2与直线y=4x所围成的平面图形的面积是$\frac{32}{3}$.

查看答案和解析>>

同步练习册答案