精英家教网 > 高中数学 > 题目详情

【题目】焦点在x轴上的椭圆C经过点,椭圆C的离心率为是椭圆的左、右焦点,P为椭圆上任意点.

1)求椭圆的标准方程;

2)若点M的中点(O为坐标原点),过M且平行于OP的直线l交椭圆CAB两点,是否存在实数,使得;若存在,请求出的值,若不存在,请说明理由.

【答案】(1)(2)存在满足条件,详见解析

【解析】

1)根据所给条件列出方程组,求解即可。

2)对直线的斜率存在与否分类讨论,当斜率存在时,设直线的方程为,联立直线与椭圆方程,利用韦达定理,即可表示出,则可求。

解:(1)由已知可得,解得

所以椭圆的标准方程为

2)若直线的斜率不存在时,

所以

当斜率存在时,设直线的方程为

联立直线与椭圆方程,消去y,得

所以

因为,设直线的方程为

联立直线与椭圆方程,消去,得,解得

同理

因为

,故,存在满足条件,

综上可得,存在满足条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.现有如下两种图象变换方案:

方案1:将函数的图像上所有点的横坐标变为原来的一半,纵坐标不变,再将所得图象向左平移个单位长度;

方案2:将函数的图象向左平移个单位长度,再将所得图象上所有点的横坐标变为原来的一半,纵坐标不变.

请你从中选择一种方案,确定在此方案下所得函数的解析式,并解决如下问题:

1)画出函数在长度为一个周期的闭区间上的图象;

2)请你研究函数的定义域,值域,周期性,奇偶性以及单调性,并写出你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数是定义域为的奇函数.

1)求实数的值;

2)若,不等式上恒成立,求实数的取值范围;

3)若,且函数上最小值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆x2+y2=8内有一点P0-12),AB为过点P0且倾斜角为α的弦.

1)当α=时,求AB的长;

2)当弦AB被点P0平分时,写出直线AB的方程(用直线方程的一般式表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】费马点是指三角形内到三角形三个顶点距离之和最小的点。当三角形三个内角均小于时,费马点与三个顶点连线正好三等分费马点所在的周角,即该点所对的三角形三边的张角相等均为。根据以上性质,函数的最小值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是( )

A. “f(0)”是“函数f(x)是奇函数”的充要条件

B. p:,则

C. “若,则”的否命题是“若,则

D. 为假命题,则p,q均为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国南北朝时期的数学家祖暅提出体积的计算原理(祖暅原理):“幂势既同,则积不容异”,“势”即是高,“幂”是面积.意思是:如果两等高的几何体在同高处所截得两几何体的截面积恒等,那么这两个几何体的体积相等.已知焦点在x轴上的双曲线C的离心率e=,焦点到其渐近线的距离为2.直线y=0与y=2在第一象限内与双曲线C及其渐近线围成如图所示的图形OABN,则它绕y轴旋转一圈所得几何体的体积为___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某次投篮测试中,有两种投篮方案:方案甲:先在A点投篮一次,以后都在B点投篮;方案乙:始终在B点投篮.每次投篮之间相互独立.某选手在A点命中的概率为,命中一次记3分,没有命中得0分;在B点命中的概率为,命中一次记2分,没有命中得0分,用随机变量表示该选手一次投篮测试的累计得分,如果的值不低于3分,则认为其通过测试并停止投篮,否则继续投篮,但一次测试最多投篮3.

(1)若该选手选择方案甲,求测试结束后所得分的分布列和数学期望.

(2)试问该选手选择哪种方案通过测试的可能性较大?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业有甲、乙两套设备生产同一种产品,为了检测两套设备的生产质量情况,随机从两套设备生产的大量产品中各抽取了50件产品作为样本,检测一项质量指标值,若该项质量指标值落在内,则为合格品,否则为不合格品. 表1是甲套设备的样本的频数分布表,图1是乙套设备的样本的频率分布直方图.

表1:甲套设备的样本的频数分布表

质量指标值

[95,100)

[100,105)

[105,110)

[110,115)

[115,120)

[120,125]

频数

1

4

19

20

5

1

图1:乙套设备的样本的频率分布直方图

(1)填写下面列联表,并根据列联表判断是否有90%的把握认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关;

甲套设备

乙套设备

合计

合格品

不合格品

合计

,求的期望.

附:

P(K2k0)

0.15

0.10

0.050

0.025

0.010

k0

2.072

2.706

3.841

5.024

6.635

.

查看答案和解析>>

同步练习册答案