精英家教网 > 高中数学 > 题目详情

已知函数①f(x)=lnx;②f(x)=cosx;③f(x)=ex;④f(x)=ecosx.其中对于f(x)定义域内的任意一个x1都存在唯一个x2,使f(x1)f(x2)=1成立的函数是________.(写出所有满足条件的函数的序号)


分析:由题意知若使得f(x1)f(x2)=1成立的函数一定是单调函数,②④不是单调函数,不合题意.因为对于函数f(x)=lnx当x1=1时,不存在x2使得f(x1)f(x2)=1成立.得到结果.
解答:由题设知,对于f(x)定义域内的任意一个自变量x1
存在定义域内的唯一一个自变量x2
使得f(x1)f(x2)=1成立的函数一定是单调函数,②④不是单调函数,不合题意.
因为对于函数f(x)=lnx当x1=1时,不存在x2使得f(x1)f(x2)=1成立,
∴由此可知,满足条件的函数有③.
故答案为:③.
点评:本题考查函数的单调性及函数的特殊点的值,本题解题的关键是看出函数的单调性,并且注意函数自变量特殊值的性质,本题是一个中档题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案