精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=tan(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<0)的图象的一个对称中心为($\frac{π}{3}$,0),且相邻对称中心的距离为$\frac{π}{4}$,求f(x)的单调区间.

分析 根据函数的对称性求出ω 和φ的值,即可求出函数的单调区间.

解答 解:∵正切函数相邻两个对称中心的距离d=$\frac{T}{2}$,
∴函数的周期T=2d=2×$\frac{π}{4}$=$\frac{π}{2}$,即$\frac{π}{ω}=\frac{π}{2}$,
∴ω=2,
即f(x)=tan(2x+φ),
由2×$\frac{π}{3}$+φ=$\frac{kπ}{2}$得φ=$\frac{kπ}{2}$-$\frac{2π}{3}$,
∵-$\frac{π}{2}$<φ<0,
∴当k=1时,φ=$\frac{π}{2}-\frac{2π}{3}$=-$\frac{π}{6}$,
则f(x)=tan(2x-$\frac{π}{6}$),
由kπ-$\frac{π}{2}$<2x-$\frac{π}{6}$<kπ+$\frac{π}{2}$,k∈Z,
得$\frac{kπ}{2}$-$\frac{π}{3}$<x<$\frac{kπ}{2}$+$\frac{π}{3}$,k∈Z,
即函数的单调递增区间为为($\frac{kπ}{2}$-$\frac{π}{3}$,$\frac{kπ}{2}$+$\frac{π}{3}$),k∈Z,无递减区间.

点评 本题主要考查正切函数的图象和性质,利用正切函数的对称性是解决本题的关键.注意正切函数y=tanx的对称中心为($\frac{kπ}{2}$,0).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知集合A={(x,y)|y=x2}.集合B={(x,y)|y=a},则“a>0”是集合A∩B中有2个元素的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知(x+2)2+$\frac{{y}^{2}}{4}$=1,求x2+y2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知θ∈R,则t=$\frac{1}{si{n}^{2}θ}$+$\frac{1}{co{s}^{2}θ}$的最小值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.证明函数f(x)=x2+2x-3在(-1,+∞)上单调递增.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.过点A(-1,-2)且倾斜角为$\frac{π}{6}$的直线的参数方程为(  )
A.$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t-1}\\{y=\frac{t}{2}-2}\end{array}\right.$(t为参数)B.$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t+1}\\{y=\frac{t}{2}+2}\end{array}\right.$(t为参数)
C.$\left\{\begin{array}{l}{x=\frac{t}{2}+1}\\{y=\frac{\sqrt{3}}{2}t+2}\end{array}\right.$(t为参数)D.$\left\{\begin{array}{l}{x=\frac{t}{2}-1}\\{y=\frac{\sqrt{3}}{2}t-2}\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.判断下列函数的单调性.
(1)y=$\frac{1}{\sqrt{{x}^{2}-2x-3}}$;
(2)y=x2+1+$\frac{1}{{x}^{2}+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求y=-2cos2x+2sinx+$\frac{3}{2}$.x∈[$\frac{π}{6}$,$\frac{7π}{6}$]的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=ax2+bx+c(a,b,c∈R).
(1)已知f(1)=-$\frac{a}{2}$.
①若f(x)<1的解集为(0,3),求f(x)的表达式;
②若a>0,求证:函数f(x)在区间(0,2)内至少有一个零点.
(2)已知a=1,若x1,x2是函数f(x)的两个零点,且x1,x2∈(m,m+1),其中m∈R,求f(m)f(m+1)的最大值.

查看答案和解析>>

同步练习册答案