【题目】在四棱锥中,平面底面,,,平分,为的中点,,,,,分别为上一点,且.
(1)若,证明:平面.
(2)过点作平面的垂线,垂足为,求三棱锥的体积.
科目:高中数学 来源: 题型:
【题目】已知数列满足, ,其中.
(1)设,求证:数列是等差数列,并求出的通项公式;
(2)设,数列的前项和为,是否存在正整数,使得对于恒成立,若存在,求出的最小值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为坐标原点,设动点.
(1)当时,若过点的直线与圆:相切,求直线的方程;
(2)当时,求以为直径且被直线截得的弦长为2的圆的方程;
(3)当时,设,过点作的垂线,与以为直径的圆交于点,垂足为,试问:线段的长是否为定值?若为定值,求出这个定值;若不为定值,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知、分别是椭圆的左顶点、右焦点,点为椭圆上一动点,当轴时, .
(1)求椭圆的离心率;
(2)若椭圆存在点,使得四边形是平行四边形(点在第一象限),求直线与的斜率之积;
(3)记圆为椭圆的“关联圆”. 若,过点作椭圆的“关联圆”的两条切线,切点为、,直线的横、纵截距分别为、,求证: 为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数.
(1)若函数是奇函数,求实数的值;
(2)若对任意的实数,函数(为实常数)的图象与函数的图象总相切于一个定点.
① 求与的值;
② 对上的任意实数,都有,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面四边形ABCD中,△BCD是正三角形,AB=AD=1,∠BAD=θ.
(Ⅰ)将四边形ABCD的面积S表示成关于θ的函数;
(Ⅱ)求S的最大值及此时θ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】猜商品的价格游戏, 观众甲: 主持人:高了! 观众甲: 主持人:低了! 观众甲: 主持人:高了! 观众甲: 主持人:低了! 观众甲: 主持人:低了! 则此商品价格所在的区间是 ( )
A. B.
C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com