精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,已知椭圆的焦距为4,且过点

1)求椭圆的方程

2)设椭圆的上顶点为,右焦点为,直线与椭圆交于两点,问是否存在直线,使得的垂心,若存在,求出直线的方程;若不存在,说明理由.

【答案】(1);(2)存在直线满足题设条件,详见解析

【解析】

1)由已知列出关于的方程组,解得,写出结果即可;

2)由已知可得,.所以,因为,所以可设直线的方程为,代入椭圆方程整理,得.设,由根与系数的关系写出两根之和和两根之积的表达式,再由垂心的性质列出方程求解即可.

(1)由已知可得,

解得所以椭圆的方程为

(2)由已知可得,,∴.∵

∴可设直线的方程为,代入椭圆方程整理,

.设

,∵.

,∵

.

,得

时,直线点,不合要求,∴

故存在直线满足题设条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2019年全国掀起了垃圾分类的热潮,垃圾分类已经成为新时尚,同时带动了垃圾桶的销售.某垃圾桶生产和销售公司通过数据分析,得到如下规律:每月生产只垃圾桶的总成本由固定成本和生产成本组成,其中固定成本为100万元,生产成本为.

1)写出平均每只垃圾桶所需成本关于的函数解析式,并求该公司每月生产多少只垃圾桶时,可使得平均每只所需成本费用最少?

2)假设该类型垃圾桶产销平衡(即生产的垃圾桶都能卖掉),每只垃圾桶的售价为元,满足.若当产量为15000只时利润最大,此时每只售价为300元,试求的值.(利润销售收入成本费用)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】共享单车又称为小黄车,近年来逐渐走进了人们的生活,也成为减少空气污染,缓解城市交通压力的一种重要手段.为调查某地区居民对共享单车的使用情况,从该地区居民中按年龄用随机抽样的方式随机抽取了人进行问卷调查,得到这人对共享单车的评价得分统计填入茎叶图,如下所示(满分分):

1)请计算这位居民问卷的平均得分;

2)若成绩在分以上问卷中从中任取份,求这份试卷的成绩都在以上(含分)的概率;

3)从成绩在分以上(含分)的居民中挑选人参加深入探讨,记抽取的个居民中成绩为分的人数为,求的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为

(Ⅰ)求的解析式;

(Ⅱ)当,求的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(题文)已知椭圆的离心率为,过点的直线交椭圆两点,,且当直线垂直于轴时,.

(Ⅰ)求椭圆的方程;

(Ⅱ)若,求弦长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】私家车的尾气排放是造成雾霾天气的重要因素之一,因此在生活中我们应该提倡低碳生活,少开私家车,尽量选择绿色出行方式,为预防雾霾出一份力.为此,很多城市实施了机动车车尾号限行,我市某报社为了解市区公众对车辆限行的态度,随机抽查了人,将调查情况进行整理后制成下表:

年龄(岁)

频数

赞成人数

)完成被调查人员的频率分布直方图.

)若从年龄在的被调查者中各随机选取人进行追踪调查,求恰有人不赞成的概率.

)在在条件下,再记选中的人中不赞成车辆限行的人数为,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)讨论函数的单调性;

)若函数有两个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】青岛二中高一高二高三三个年级数学MT的学生人数分别为240人,240人,120人,现采用分层抽样的方法从中抽取5名同学参加团队内部举办的趣味数学比赛,再从5位同学中选出2名一等奖记A两名一等奖来自同一年级,则事件A的概率为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某包子店每天早晨会提前做好一定量的包子,以保证当天及时供应,该包子店记录了60天包子的日需求量(单位:个,.分组,整理得到如图所示的频率分布直方图,图中.

(1)求包子日需求量平均数的估计值(每组以中点值作为代表);

(2)若包子店想保证至少的天数能够足量供应,则每天至少要做多少个包子?

查看答案和解析>>

同步练习册答案