精英家教网 > 高中数学 > 题目详情
10.如图,在Rt△ABC中,∠A=90°,D是AC上一点,E是BC上一点,若AB=$\frac{1}{2}BD,CE=\frac{1}{4}$EB.∠BDE=120°,CD=3,则BC=$\sqrt{93}$.

分析 经E点作EF⊥AC于F点,设AB=x,则由题意可求得BD,AD,AC,BC2,EF,ED,△EDB中,由余弦定理,整理可得:5x2-8$\sqrt{3}$x-12=0,可解得x,从而可求BC.

解答
解:如图,经E点作EF⊥AC于F点,设AB=x,则由题意可得,
BD=2x,AD=$\sqrt{3}$x,AC=3+$\sqrt{3}$x,BC2=x2+(3+$\sqrt{3}$x)2
∵△CEF∽△ABC,∴$\frac{EF}{AB}=\frac{EC}{BC}$=$\frac{1}{5}$,即有EF=$\frac{1}{5}$x,
∵∠BDE=120°,AB=$\frac{1}{2}$BD,
∴∠EDF=30°,∴ED=2EF=$\frac{2}{5}$x,
∴△EDB中,由余弦定理知:BE2=DE2+BD2-2ED×BD×cos120°
=$\frac{4}{25}$x2+4x2-2×$\frac{2}{5}$x×2x×(-$\frac{1}{2}$)=$\frac{16}{25}$BC2
=$\frac{16}{25}$[x2+(3+$\sqrt{3}$x)2],
整理可得:5x2-8$\sqrt{3}$x-12=0,
∴可解得:x=2$\sqrt{3}$或-$\frac{2\sqrt{3}}{5}$(舍去),
∴BC2=x2+(3+$\sqrt{3}$x)2=93,可解得:BC=$\sqrt{93}$.
故答案为:$\sqrt{93}$.

点评 本题主要考察了余弦定理的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知点A($\sqrt{3}$,0)和P($\sqrt{3}$,t)(t∈R).若曲线x=$\sqrt{3-{y}^{2}}$上存在点B使∠APB=60°,则t的取值范围是(  )
A.(0,1+$\sqrt{3}$]B.[0,1+$\sqrt{3}$]C.[-1-$\sqrt{3}$,1+$\sqrt{3}$]D.[-1-$\sqrt{3}$,0)∪(0,1+$\sqrt{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=2sin(ωx+$\frac{π}{6}$)(ω>0),y=f(x)的图象与直线y=2的两个相邻交点的距离等于π,则f(x)的单调递增区间为(  )
A.[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$]k∈ZB.[kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$]k∈Z
C.[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$]k∈ZD.[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$]k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)=ax2+bx+2a-b是定义在[a-1,2a]上的偶函数,则a+b=(  )
A.-$\frac{1}{3}$B.$\frac{1}{3}$C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知x、y满足约束条件$\left\{\begin{array}{l}{x-y≥1}\\{2x-y+1≤0}\end{array}\right.$,且目标函数z=mx-ny(m>0,n<0)的最大值为-6,则$\frac{n}{m-1}$的取值范围是(  )
A.[-2,0]∪[$\frac{1}{2}$,+∞)B.[2,+∞)C.(-∞,0)∪(2,+∞)D.(-∞,0)∪[$\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数y=sinx(x∈[0,π])图象上两个点A(x1,y1),B(x2,y2)(x1<x2)满足AB∥x轴,O是坐标原点,若点C的坐标为(π,0),则四边形OABC的面积最大时,tanx1-x2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.“若x2=1,则x=1”的否命题为(  )
A.若x2≠1,则x=1B.若x2=1,则x≠1C.若x2≠1,则x≠1D.若x≠1,则x2≠1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若函数f(x)=$\frac{1}{3}$x3-(a+$\frac{1}{2}$)x2+(a2+a)x-$\frac{1}{2}$a2+$\frac{1}{2}$有两个以上的零点,则a的取值范围是(  )
A.(-2,-1)B.(-∞,-2)∪(-1,+∞)C.$(-\root{3}{{\frac{3}{2}}},-1)$D.$(-∞,-\root{3}{{\frac{3}{2}}})∪(-1,+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,点D在BC边上,AD平分∠BAC,AB=6,AD=3$\sqrt{2}$,AC=4.
(1)利用正弦定理证明:$\frac{AB}{AC}=\frac{BD}{DC}$;
(2)求BC的长.

查看答案和解析>>

同步练习册答案