精英家教网 > 高中数学 > 题目详情
20.已知数列{an}(n∈N*)中,a1=2,a2=3,当n≥3时,an=3an-1-2an-2,则an=2n-1+1.

分析 由已知数列递推式可得,数列{an+1-an}构成以1为首项,以2为公比的等比数列,求其通项公式后,利用累加法求得an

解答 解:由an=3an-1-2an-2,得an-an-1=2(an-1-an-2)(n≥3),
∵a1=2,a2=3,
∴a2-a1=1≠0,
则数列{an+1-an}构成以1为首项,以2为公比的等比数列,
∴${a}_{n+1}-{a}_{n}={2}^{n-1}$.
则an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=2n-2+2n-1+…+20+2=$\frac{1×(1-{2}^{n-1})}{1-2}+2={2}^{n-1}+1$.
故答案为:2n-1+1.

点评 本题考查数列递推式,考查了等比关系的确定,训练了累加法求数列的通项公式,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知椭圆$\frac{x^2}{16}+\frac{y^2}{4}$=1过点P(2,1)作弦且弦被P平分,则此弦所在的直线方程为(  )
A.2x-y-3=0B.2x-y-1=0C.x+2y-1=0D.x+2y-4=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.函数y=Asin(ωx+ϕ),(A>0,ω>0,0<ϕ<π)在一个周期内的图象如图所示.
(1)求该函数的解析式.
(2)当$x∈[-\frac{π}{2},\frac{π}{6}]$时,求该函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.过抛物线y2=4x的焦点F的直线交抛物线于A,B两点,点O是原点,若|AF|=4,则△AOF的面积为(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{4\sqrt{3}}{3}$C.$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆E的中心在坐标原点,左、右焦点F1、F2分别在x轴上,离心率为$\frac{1}{2}$,在其上有一动点A,A到点F1距离的最小值是1,过A、F1作一个平行四边形,顶点A、B、C、D都在椭圆E上,如图所示.
(Ⅰ)求椭圆E的方程;
(Ⅱ)判断?ABCD能否为菱形,并说明理由.
(Ⅲ)当?ABCD的面积取到最大值时,判断?ABCD的形状,并求出其最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知定义在实数集R上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=2x+1
(1)求f(x)与g(x)的解析式;
(2)求证:f(x)在区间[0,+∞)上单调递增;并求f(x)在区间[0,+∞)的反函数;
(3)设h(x)=x2+2mx+m2-m+1(其中m为常数),若h(g(x))≥m2-m-1对于x∈[1,2]恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知$cos(\frac{π}{2}-α)=\frac{3}{5},α∈({\frac{π}{2},π})$,则$sin({α+\frac{π}{3}})$=$\frac{{3-4\sqrt{3}}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若幂函数f(x)的图象过点$({\;2\;,\;\frac{{\sqrt{2}}}{2}\;})$,则f-1(2)=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x|x-a|,其中a∈R
(1)判断函数f(x)的奇偶性;
(2)解关于x的不等式:f(x)≥2a2
(3)若函数f(x)=1有三个不等实根,求实数a的取值范围.

查看答案和解析>>

同步练习册答案