精英家教网 > 高中数学 > 题目详情
8.规定一双筷子由同色的两支组成,现黑,白,黄筷子各8支,若不用眼睛看,任意地取出若干支筷子,要做到使被取出的筷子至少有一双同色,则至少应取出4只筷子.

分析 把3种不同颜色看作3个抽屉,把8支不同颜色的筷子看作8个元素,从最不利情况考虑,取出三根,颜色各不相同,此时再任意取出一支,即可出现一双颜色相同的筷子,据此即可解答问题

解答 解:根据题干分析可得:3+1=4(个)
故要想从这些筷子中取出的筷子至少有一双同色,至少要取出4支筷子,
故答案为:4.

点评 解答此题的关键是明确:要想从这些筷子中取出颜色相同的一双筷子,至少要取出多少根才能保证达到要求,用颜色数+1即可解答问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=2CD,E、E1分别是棱AD,AA1上的点,设F是棱AB的中点,证明:EE1∥平面FCC1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知sin($\frac{π}{3}$一α)=$\frac{1}{4}$,求sin($\frac{4π}{3}$-α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.化简:
(1)cosθtanθ;
(2)$\frac{2co{s}^{2}α-1}{1-2si{n}^{2}α}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知A=12!,且A÷B是一个完全平方数,那么B的最小值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.与点(5,1)关于直线x=1的对称点的坐标为(-3,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.不等式组$\left\{\begin{array}{l}{|x|-1<0}\\{x^2-3x<0}\end{array}\right.$的解集是(  )
A.{x|0<x<1}B.{x|0<x<3}C.{x|-1<x<1}D.{x|-1<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知:a∈R,b∈R,若集合{a,$\frac{b}{a}$,1}={a2,a+b,0},则a2015+b2015的值为(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.定义在R上的函数f(x)满足f(x)=$\left\{\begin{array}{l}{x,-1≤x<0}\\{{x}^{2},0≤x<1}\end{array}\right.$,且f(x+2)=f(x),g(x)=$\frac{1}{x-2}$.则方程f(x)=g(x)在区间[-3,7]上的所有实数根之和最接近下列哪个数(  )
A.10B.8C.7D.6

查看答案和解析>>

同步练习册答案