精英家教网 > 高中数学 > 题目详情

【题目】若函数的定义域为,满足对任意,有,则称型函数;若函数的定义域为,满足对任意恒成立,且对任意,有,则称为对数型函数.

1)当函数时,判断是否为型函数,并说明理由.

2)当函数时,证明:是对数型函数.

3)若函数型函数,且满足对任意,有,问是否为对数型函数?若是,加以证明;若不是,请说明理由.

【答案】(1)不是型函数,详见解析(2)证明见解析(3)是对数型函数,证明见解析

【解析】

1)由,作差化简,得到当同号时,此时,即可得到结论;

2)因为恒成立,可利用分析法和函数的新定义,作出判定和证明.

3)由的新定义和,得到,进而得到,再根据对数的运算性质,即可求解.

1)由题,函数

同号时,此时

此时不满足,所以不是型函数.

2)因为恒成立,

要证对任意

即证对任意

即证对任意

因为

所以是对数型函数

3)函数是对数型函数.证明如下:

因为型函数,所以对任意,有

又由对任意,有,所以

所以,所以

所以

所以是对数型函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知过定点,且与直线相切的动圆圆心为.

)求圆心的轨迹方程

)过点作直线与轨迹交于两点,交直线于点中点记为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的的参数方程为(其中为参数),以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线经过点曲线的极坐标方程为.

(1)求直线的普通方程与曲线的直角坐标方程

(2)过点作直线的垂线交曲线两点(轴上方),求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某品种一批树苗生长情况,在该批树苗中随机抽取了容量为120的样本测量树苗高度(单位:cm),经统计,其高度均在区间[19,31]内,将其按[19,21),[21,23),[23,25),[25,27),[27,29),[29,31]分成6组,制成如图所示的频率分布直方图.其中高度为27 cm及以上的树苗为优质树苗.

(1)求图中a的值

(2)已知所抽取的这120棵树苗来自于A,B两个试验区,部分数据如下列联表:

A试验区

B试验区

合计

优质树苗

20

非优质树苗

60

合计

将列联表补充完整,并判断是否有99.9%的把握认为优质树苗与A,B两个试验区有关系,并说明理由;

(3)用样本估计总体若从这批树苗中随机抽取4棵,其中优质树苗的棵数为X,求X的分布列和数学期望EX

下面的临界值表仅供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:,其中.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一个“蝴蝶形图案(阴影区域)”,其中是过抛物线的两条互相垂直的弦(点在第二象限),且交于点,点轴上一点,,其中为锐角

(1)设线段的长为,将表示为关于的函数

(2)求“蝴蝶形图案”面积的最小值,并指出取最小值时的大小

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某地一天从时的温度变化曲线近似满足函数.

(1)求该地区这一段时间内温度的最大温差.

(2)若有一种细菌在之间可以生存,则在这段时间内,该细菌最多能存活多长时间?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】山东新旧动能转换综合试验区是党的十九大后获批的首个区域性国家发展战略,也是中国第一个以新旧动能转换为主题的区域发展战略.泰安某高新技术企业决定抓住发展机遇,加快企业发展.已知该企业的年固定成本为500万元,每生产设备台,需另投入成本万元.若年产量不足80台,则;若年产量不小于80台,则.每台设备售价为100万元,通过市场分析,该企业生产的设备能全部售完.

1)写出年利润(万元)关于年产量(台)的关系式;

2)年产量为多少台时,该企业所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种商品价格与该商品日需求量之间的几组对照数据如下表,经过进一步统计分析,发现yx具有线性相关关系.

价格x(元/kg

10

15

20

25

30

日需求量ykg

11

10

8

6

5

1)根据上表给出的数据,求出yx的线性回归方程

2)利用(1)中的回归方程,当价格/kg时,日需求量y的预测值为多少?

(参考公式:线性回归方程,其中.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学有初中学生1800人,高中学生1200人.为了解全校学生本学期开学以来的课外阅读时间,学校采用分层抽样方法,从中抽取了100名学生进行问卷调查.将样本中的“初中学生”和“高中学生”,按学生的课外阅读时间(单位:小时)各分为5组:,得其频率分布直方图如图所示.

1)估计全校学生中课外阅读时间在小时内的总人数约是多少;

2)从全校课外阅读时间不足10个小时的样本学生中随机抽取3人,求至少有2个初中生的概率.

查看答案和解析>>

同步练习册答案