【题目】已知函数.
(1)证明:在区间上存在唯一零点;
(2)令,若时有最大值,求实数的取值范围.
【答案】(1)见解析(2)
【解析】
(1)对求导得到,再对求导,得到,根据的正负,得到的单调性,再由定义域求出的正负,从而得到的单调性,由零点存在定理,进行证明;(2)对求导,得到,令,根据(1)的结论,可得在上有唯一零点,再按和进行分类,分别研究的单调性,从而得到有最大值时对的要求,得到答案.
(1)
易知在区间上恒成立,则在单调递减
所以=0,即f(x)在单调递增,
又,则在区间必存在唯一零点
(2)
所以
令,则
由(1)知:则在单调递增
又,即在上有唯一零点
当时,由得,所以在区间单调递增;在区间单调递减;此时h(x)存在最大值h(0),满足题意;
当时,由有两个不同零点x=0及,所以h(x)在区间(0,a)单调递减;在区间,单调递增;此时h(x)有极大值h(0)=2a
由h(x)有最大值,可得;,解得,即
综上所述:当时,h(x)在有最大值
科目:高中数学 来源: 题型:
【题目】随着移动互联网的发展,与餐饮美食相关的手机APP软件层出不穷.现从使用A和B两款订餐软件的商家中分别随机抽取50个商家,对它们的“平均送达时间”进行统计,得到频率分布直方图如图.
(1)试估计使用A款订餐软件的50个商家的“平均送达时间”的众数及平均数;
(2)根据以上抽样调查数据,回答以下问题:
(ⅰ)为了解如何降低各商家的送餐时间,我们先从这100家商家里选出平均送达时间不超过20分钟的商家,然后再从中随机挑选两家进行跟踪研究,求恰好所抽中的商家均为使用B款软件的概率.
(ⅱ)如果你要从A和B两款订餐软件中选择一款订餐,你会选择哪款?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求直线的普通方程和曲线的直角坐标方程;
(2)设点,直线与曲线交于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为缓减人口老年化带来的问题,中国政府在2016年1月1日作出全国统一实施全面的“二孩”政策,生“二孩”是目前中国比较流行的元素某调查机构对某校学生做了一个是否同意父母生“二孩”抽样调查,该调查机构从该校随机抽查了100名不同性别的学生,调查统计他们是同意父母生“二孩”还是反对父母生“二孩”现已得知100人中同意父母生“二孩”占,统计情况如表:
性别属性 | 同意父母生“二孩” | 反对父母生“二孩” | 合计 |
男生 | 10 | ||
女生 | 30 | ||
合计 | 100 |
请补充完整上述列联表;
根据以上资料你是否有把握,认为是否同意父母生“二孩”与性别有关?请说明理由.
参考公式与数据:,其中
k |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在甲、乙两个盒子中分别装有标号为1、2、3、4的四个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等.
(Ⅰ)求取出的两个球上标号为相同数字的概率;
(Ⅱ)求取出的两个球上标号之积能被3整除的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=+.
(1)当m=0时,求不等式f(x)≤9的解集;
(2)当m=2时,若x∈(1,4),f(x) 2xa<0,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国“一带一路”战略构思提出后, 某科技企业为抓住“一带一路”带来的机遇, 决定开发生产一款大型电子设备, 生产这种设备的年固定成本为万元, 每生产台,需另投入成本(万元), 当年产量不足台时, (万元); 当年产量不小于台时 (万元), 若每台设备售价为万元, 通过市场分析,该企业生产的电子设备能全部售完.
(1)求年利润 (万元)关于年产量(台)的函数关系式;
(2)年产量为多少台时 ,该企业在这一电子设备的生产中所获利润最大?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com