精英家教网 > 高中数学 > 题目详情

【题目】数列{an}的前n项和是Sn , 且Sn+ an=1,数列{bn},{cn}满足bn=log3 ,cn= . (Ⅰ)求数列{an}的通项公式;
(Ⅱ)数列{cn}的前n项和为Tn , 若不等式Tn<m对任意的正整数n恒成立,求m的取值范围.

【答案】解:(Ⅰ)由题意得: ,① ② ① ﹣②可得 =0,即
当n=1时 ,则 ,则{an}是以 为首项, 为公比的等比数列.
因此
(Ⅱ) ,cn= = = ..


【解析】(I)利用递推公式、等比数列的通项公式即可得出.(II)利用“裂项求和”方法即可得出.
【考点精析】解答此题的关键在于理解数列的前n项和的相关知识,掌握数列{an}的前n项和sn与通项an的关系,以及对数列的通项公式的理解,了解如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】将圆的一组等分点分别涂上红色或蓝色,从任意一点开始,按逆时针方向依次记录个点的颜色,称为该圆的一个“阶色序”,当且仅当两个“阶色序”对应位置上的颜色至少有一个不相同时,称为不同的“阶色序”.若某圆的任意两个“阶色序”均不相同,则称该圆为“阶魅力圆”.“4阶魅力圆”中最多可有的等分点个数为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设F1 , F2为双曲线C: 的左,右焦点,P,Q为双曲线C右支上的两点,若 =2 ,且 =0,则该双曲线的离心率是(
A.
B.2
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的不等式的解集为

(1)求a,b的值.

(2)当时,解关于x的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】自2016年1月1日起,我国全面二孩政策正式实施,这次人口与生育政策的历史性调整,使得“要不要再生一个”“生二孩能休多久产假”等成为千千万万个家庭在生育决策上避不开的话题.为了解针对产假的不同安排方案形成的生育意愿,某调查机构随机抽取了200户有生育二胎能力的适龄家庭进行问卷调查,得到如下数据:

产假安排(单位:周)

14

15

16

17

18

有生育意愿家庭数

4

8

16

20

26


(1)若用表中数据所得的频率代替概率,面对产假为14周与16周,估计某家庭有生育意愿的概率分别为多少?
(2)假设从5种不同安排方案中,随机抽取2种不同安排分别作为备选方案,然后由单位根据单位情况自主选择. ①求两种安排方案休假周数和不低于32周的概率;
②如果用ξ表示两种方案休假周数和.求随机变量ξ的分布及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于x的不等式xex﹣2ax+a<0的非空解集中无整数解,则实数a的取值范围是(
A.[
B.[
C.[ ,e]
D.[ ,e]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果数列),满足:①

,那么称数列数列.

已知数列数列.试判断数列是否为数列.

是否存在一个等差数列是数列?请证明你的结论.

如果数列数列,求证:数列中必定存在若干项之和为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的不等式|x﹣3|+|x﹣m|≥2m的解集为R. (Ⅰ)求m的最大值;
(Ⅱ)已知a>0,b>0,c>0,且a+b+c=m,求4a2+9b2+c2的最小值及此时a,b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直棱柱中,已知,设中点为中点为

Ⅰ)求证:平面

Ⅱ)求证:平面平面

查看答案和解析>>

同步练习册答案