精英家教网 > 高中数学 > 题目详情

【题目】解答题。
(1)已知集合A={x|ax2﹣3x+1=0,a∈R},若A中只有一个元素,求a的取值范围.
(2)集合A={x|x2﹣6x+5<0},C={x|3a﹣2<x<4a﹣3},若CA,求a的取值范围.

【答案】
(1)解:若A中只有一个元素,则方程ax2﹣3x+1=0有且只有一个实根

当a=0时方程为一元一次方程,满足条件

当a≠0,此时△=9﹣4a=0,解得:a=

∴a=0或a=


(2)解:∵A={x|x2﹣6x+5<0}={x|1<x<5},

∵CA,

当C=时,3a﹣2>4a﹣3,解得a<1;

当C≠时∴

解得:a≤2


【解析】(1)若A中只有一个元素,表示方程ax2﹣3x+1=0为一次方程,或有两个等根的二次方程,分别构造关于a的方程,即可求出满足条件的a值.(2)先解A,由于CA,所以 ,解得即可.
【考点精析】掌握集合的表示方法-特定字母法是解答本题的根本,需要知道①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{|具有的性质},其中为集合的代表元素.④图示法:用数轴或韦恩图来表示集合.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】学校将高二年级某班级50位同学期中考试数学成绩(均为整数)分为7组进行统计,得到如图所示的频率分布直方图.观察图中信息,回答下列问题.

(Ⅰ)试估计该班级同学数学成绩的平均分;

(Ⅱ)先准备从该班级数学成绩不低于130分的同学中随机选出2人参加某活动,求选出的两人在同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定两个命题,命题P:函数f(x)=(a﹣1)x+3在R上是增函数; 命题q:关于x的方程x2﹣x+a=0有实数根. 若p∧q为假命题,p∨q为真命题,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设关于x的不等式|x﹣2|<a(a∈R)的解集为A,且 ∈A,﹣ A.
(1)对任意的x∈R,|x﹣1|+|x﹣3|≥a2+a恒成立,且a∈N,求a的值.
(2)若a+b=1,a,b∈R+ , 求 + 的最小值,并指出取得最小值时a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)= +lg(x+2)的定义域为(
A.(﹣2,1)
B.(﹣2,1]
C.[﹣2,1)
D.[﹣2,﹣1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)当时,证明:对任意的,有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,已知cosC+(cosA﹣ sinA)cosB=0.
(1)求角B的大小;
(2)若a=2,b= ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市司法部门为了宣传《宪法》举办法律知识问答活动,随机对该市18~68岁的人群抽取一个容量为n的样本,并将样本数据分成五组:[18,28),[28,38),[38,48),[48,58),[58,68),再将其按从左到右的顺序分别编号为第1组,第2组,…,第5组,绘制了样本的频率分布直方图;并对回答问题情况进行统计后,结果如下表所示.

组号

分组

回答正确的人数

回答正确的人数占本组的比例

第1组

[18,28)

5

0.5

第2组

[28,38)

18

a

第3组

[38,48)

27

0.9

第4组

[48,58)

x

0.36

第5组

[58,68)

3

0.2


(1)分别求出a,x的值;
(2)从第2,3,4组回答正确的人中用分层抽样方法抽取6人,则第2,3,4组每组应各抽取多少人?
(3)在(2)的前提下,决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在[﹣1,1]的函数满足f(﹣x)=﹣f(x),当a,b∈[﹣1,0)时,总有 >0(a≠b),若f(m+1)>f(2m),则实数m的取值范围是

查看答案和解析>>

同步练习册答案