精英家教网 > 高中数学 > 题目详情

【题目】某社会机构为了调查对手机游戏的兴趣与年龄的关系,通过问卷调查,整理数据得如下列联表:

1)根据列联表,能否有99.9%的把握认为对手机游戏的兴趣程度与年龄有关?

2)若已经从40岁以下的被调查者中用分层抽样的方式抽取了5名,现从这5名被调查者中随机选取3名,求这3名被调查者中恰有1名对手机游戏无兴趣的概率.

附:

参考数据:

【答案】(1)没有的把握认为手机游戏的兴趣程度与年龄有关;(2)

【解析】

1)计算出,根据参考数据判断出没有的把握认为手机游戏的兴趣程度与年龄有关.

2)利用列举法,结合古典概型概率计算公式,求得所求概率.

(1)

∴没有99.9%的把握认为手机游戏的兴趣程度与年龄有关.

(2)由题得40岁以下的被调查者中用分层抽样的方式抽取的5名人员中有3名对手机游戏很有兴趣,

设为;有2名对手机游戏无兴趣,设为,从中随机选取3名的基本事件有共10个.

其中恰有1个的有共6个

∴这3名被调查者中恰有1名对手机游戏无兴趣的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设数列的项数均为,则将两个数列的偏差距离定义为,其中.

1)求数列1278和数列2356的偏差距离;

2)设为满足递推关系的所有数列的集合,中的两个元素,且项数均为,若的偏差距离小于2020,求最大值;

3)记是所有7项数列的集合,,且中任何两个元素的偏差距离大于或等于3,证明:中的元素个数小于或等于16.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线,对坐标平面上任意一点,定义,若两点,,满足,称点,在曲线同侧;,称点,在曲线两侧.

(1)直线过原点,线段上所有点都在直线同侧,其中,求直线的倾斜角的取值范围;

(2)已知曲线为坐标原点,求点集的面积;

(3)记到点与到轴距离和为的点的轨迹为曲线,曲线,若曲线上总存在两点,在曲线两侧,求曲线的方程与实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出条件:①;②;③;④;使得函数,对任意,都使成立的条件序号是()

A.①③B.②④C.③④D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义在上的函数,若函数满足:①在区间上单调递减,②存在常数,使其值域为,则称函数是函数的“渐近函数”.

(1)判断函数是不是函数的“渐近函数”,说明理由;

(2)求证:函数不是函数的“渐近函数”;

(3)若函数,求证:当且仅当时,的“渐近函数”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的零点的个数;

2)当函数有两个零点时,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列各项不为0,前项和为.

(1)若,求数列的通项公式;

(2)在(1)的条件下,已知,分别求的表达式;

(3)证明:是等差数列的充要条件是:对任意,都有:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数在区间上的最小值

(2)令是函数图象上任意两点,且满足求实数的取值范围;

(3)若,使成立,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,动点P与定点的距离和它到定直线的距离之比是,设动点P的轨迹为E.

(1)求动点P的轨迹E的方程;

(2)设过F的直线交轨迹E的弦为AB,过原点的直线交轨迹E的弦为CD,若,求证:为定值.

查看答案和解析>>

同步练习册答案