精英家教网 > 高中数学 > 题目详情
正方形的边长为2,分别为边的中点,是线段的中点,如图,把正方形沿折起,设

(1)求证:无论取何值,不可能垂直;
(2)设二面角的大小为,当时,求的值.
(1)不可能垂直; (2)的值为

试题分析:(1)假设,                                     1分
又因为,所以平面,          3分
所以,又,所以,              5分
这与矛盾,所以假设不成立,所以不可能垂直;   6分
(2)分别以轴,过点垂直平面向上为轴,如图建立坐标系,

设平面的一个法向量为

,     7分
,   8分
设平面的一个法向量为
,       9分
,   10分
                11分
=,                              12分
,                                             13分
所以当时,的值为.                     14分
点评:中档题,立体几何问题中,平行关系、垂直关系,角、距离、面积、体积等的计算,是常见题型,基本思路是将空间问题转化成为平面问题,利用平面几何知识加以解决。要注意遵循“一作,二证,三计算”。利用“向量法”,通过建立空间直角坐标系,往往能简化解题过程。对于折叠问题,首先要弄清“变”与“不变”的几何元素。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,六棱锥的底面是边长为1的正六边形,底面
(Ⅰ)求证:平面平面
(Ⅱ)若直线PC与平面PDE所成角为,求三棱锥高的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图1,在直角梯形中,AD//BC, =900,BA="BC" 把ΔBAC沿折起到的位置,使得点在平面ADC上的正投影O恰好落在线段上,如图2所示,点分别为线段PC,CD的中点.

(I) 求证:平面OEF//平面APD;
(II)求直线CD与平面POF;
(III)在棱PC上是否存在一点,使得到点P,O,C,F四点的距离相等?请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,

(I)求证
(II)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列命题正确的是(  )
A.有两个面平行,其余各面都是四边形的几何体叫棱柱.
B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱.
C.有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱.
D.用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在△ABC 中,∠C =90°,∠B =30°,AC=1,M 为 AB 中点,将△ACM 沿 CM 折起,使 A、B 间的距离为 ,则 M 到面 ABC 的距离为(  )

(A)
(B)
(C)1
(D)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个正方体的展开图如图所示,A、B、C、D为原正方体的顶点,则在原来的正方体中( )

A.         B.相交
C.         D.所成的角为 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直三棱柱中,

(1)求异面直线 与所成角的大小;
(2)求多面体的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知m、n是两条不重合的直线,α、β是两个不重合的平面,下列命题中正确的是(  )
A.若m∥α,n∥β,α∥β,则m∥nB.若m∥n,nÌα,m(/α,则m∥α
C.若α⊥β,m⊥α,则m∥βD.若m⊥α,nÌβ,m⊥n,则α⊥β

查看答案和解析>>

同步练习册答案