精英家教网 > 高中数学 > 题目详情

如图,四棱锥S-ABCD中,SD底面ABCD,AB//DC,ADDC,AB=AD=1,DC=SD=2,E为棱SB上任一点.

(Ⅰ)求证:无论E点取在何处恒有
(Ⅱ)设,当平面EDC平面SBC时,求的值;
(Ⅲ)在(Ⅱ)的条件下求二面角的大小.

(Ⅰ)证明见解析;(Ⅱ);(Ⅲ).

解析试题分析:(Ⅰ)连接,过点,交于点,先证明,再由得到,依据直线与平面垂直的判定定理可知,,从而由直线与平面垂直的性质定理可得到;(Ⅱ) 分别以所在直线为轴,轴,建立空间直角坐标系,根据,求得,由以及,分别取平面和平面的法向量,则由已知条件“”可得,从而解出的值;(Ⅲ)当时,,分别求出平面和平面的一个法向量,求出它们的法向量的夹角,根据二面角是一个钝角,那么法向量的夹角或夹角的补角即是所求的二面角.
试题解析:(Ⅰ)连接,过点,交于点,如图:

,∴
又∵,∴
,又,∴
,∴
,∴.
(Ⅱ)分别以所在直线为轴,轴,建立空间直角坐标系,如图:

,则

所以
取平面的一个法向量

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,点分别是棱的中点.

(1)求证://平面
(2)若平面平面,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.

(1)求证:∥平面
(2)求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE=x,G是BC的中点。沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图) .

(1) 当x=2时,求证:BD⊥EG ;
(2) 若以F、B、C、D为顶点的三棱锥的体积记为f(x),求f(x)的最大值;
(3) 当f(x)取得最大值时,求二面角D-BF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图在正三棱锥P-ABC中,侧棱长为3,底面边长为2,E为BC的中点,

(1)求证:BC⊥PA
(2)求点C到平面PAB的距离

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知平面是正三角形,AD=DEAB,且F是CD的中点.

⑴求证:AF//平面BCE;
⑵求证:平面BCE⊥平面CDE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面为直角梯形,垂直于底面分别为的中点.

(1)求证:
(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

将边长为的正方形和等腰直角三角形按图拼为新的几何图形,中,,连结,若,中点

(Ⅰ)求所成角的大小;
(Ⅱ)若中点,证明:平面
(Ⅲ)证明:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面为菱形,的中点.

(1)若,求证:平面平面
(2)点在线段上,,若平面平面,且,求二面角的大小.

查看答案和解析>>

同步练习册答案