精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线,斜率为的直线交抛物线两点,当直线过点时,以为直径的圆与直线相切.

(1)求抛物线的方程;

(2)与平行的直线交抛物线于两点,若平行线之间的距离为,且的面积是面积的倍,求的方程.

【答案】(1);(2)或者

【解析】

(1)直线方程为代入根据中点坐标公式,结合韦达定理可得圆心坐标,利用弦长公式可得圆的直径,利用圆心到直线的距离等于半径,列方程求解即可得到抛物线的方程;(2)利用点到直线距离公式、弦长公式,结合三角形面积公式可得,同理可得利用 的面积是面积的倍列方程求解即可.

1)设AB直线方程为代入

时,AB的中点为

依题意可知,解之得

抛物线方程为.

2O到直线的距离为

.

因为平行线之间的距离为,则CD的直线方程为

.

依题意可知,即

化简得,∴代入

或者.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知二次函数fx)满足条件f0)=1,及fx+1)﹣fx)=2x

1)求函数fx)的解析式;

2)在区间[11]上,yfx)的图象恒在y2x+m的图象上方,试确定实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱柱中,侧面是边长为2的菱形,.

(Ⅰ)证明:

(Ⅱ)若底面是以为直角顶点的直角三角形,且,求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若某校研究性学习小组共6人,计划同时参观科普展,该科普展共有甲,乙,丙三个展厅,6人各自随机地确定参观顺序,在每个展厅参观一小时后去其他展厅,所有展厅参观结束后集合返回,设事件A为:在参观的第一小时时间内,甲,乙,丙三个展厅恰好分别有该小组的2个人;事件B为:在参观的第二个小时时间内,该小组在甲展厅人数恰好为2人,则 ).

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】大型综艺节目,《最强大脑》中,有一个游戏叫做盲拧魔方,就是玩家先观察魔方状态并进行记忆,记住后蒙住眼睛快速还原魔方,盲拧在外人看来很神奇,其实原理是十分简单的,要学会盲拧也是很容易的根据调查显示,是否喜欢盲拧魔方与性别有关为了验证这个结论,某兴趣小组随机抽取了50名魔方爱好者进行调查,得到的情况如表所示,并邀请其中20名男生参加盲拧三阶魔方比赛,其完成情况如表所示.

(Ⅰ)将表补充完整,并判断能否在犯错误的概率不超过的前提下认为是否喜欢盲拧与性别有关?

(Ⅱ)现从表中成功完成时间在这两组内的6名男生中任意抽取2人对他们的盲拧情况进行视频记录,求2人成功完成时间恰好在同一组内的概率.

附参考公式及数据:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,由直三棱柱和四棱锥构成的几何体中,,平面平面

(I)求证:

(II)若M为中点,求证:平面

(III)在线段BC上(含端点)是否存在点P,使直线DP与平面所成的角为?若存在,求得值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中a >2.

(I)讨论函数f(x)的单调性;

(II)若对于任意的,恒有,求a的取值范围.

(III)设,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=x2+2xtanθ-1,x∈[-1,],其中θ∈(-).

(1)当θ=-时,求函数f(x)的最大值;

(2)求θ的取值范围,使yf(x)在区间[-1,]上是单调函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数aR).

1)讨论yfx)的单调性;

2)若函数fx)有两个不同零点x1x2,求实数a的范围并证明

查看答案和解析>>

同步练习册答案