精英家教网 > 高中数学 > 题目详情

【题目】给出以下命题:

1)已知回归直线方程为,样本点的中心为,则

2)已知的夹角为钝角,则的充要条件;

3)函数图象关于点对称且在上单调递增;

4)命题存在的否定是对于任意

5)设函数,若函数恰有三个零点,则实数m的取值范围为.

其中不正确的命题序号为______________ .

【答案】2)(4)(5

【解析】

根据线性回归直线的性质、充分必要条件的定义、正弦型函数的性质、命题的否定、函数的零点等知识对各个命题进行判断.

1)根据回归直线恒过样本的中心点,可得,故正确;

2)由的夹角为钝角或平角,所以根据充要条件的定义可判断错误.故错误;

3)把代入函数,函数值为,所以函数关于对称,由,可得所以函数在上是递增的.所以函数在上是递增的.故正确;

4)命题“存在”的否定是“对于任意”故错误;

5)构造函数,要使函数恰有三个零点,必须使函数有零点,并且函数有两个零点,而函数上的两个零点为-1和-2,从而得到,故是错误的.

故答案为:(2)(4)(5).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程是为参数,),在以坐标原点为极点,轴的非负半轴为极轴的极坐标系中,曲线的极坐标方程是,等边的顶点都在上,且点按照逆时针方向排列,点的极坐标为.

(Ⅰ)求点的直角坐标;

(Ⅱ)设上任意一点,求点到直线的距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有以下命题:

①存在实数,使得

的否定是存在

③掷一枚质地均匀的正方体骰子,向上的点数不小于3的概率为

④在闭区间上取一个随机数,则的概率为

其中所有的真命题为________.(填写所有正确的结论序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正三棱柱中底面边长、侧棱长都是4别是的中点,则以下四个结论中正确的是(

所成的角的余弦值为;②平行于平面;③三棱锥的体积为;④垂直于

A.①②③B.②③④C.①③④D.①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆的离心率相等.椭圆的右焦点为F,过点F的直线与椭圆交于AB两点,射线与椭圆交于点C,椭圆的右顶点为D

1)求椭圆的标准方程;

2)若的面积为,求直线的方程;

3)若,求证:四边形是平行四边形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某地区某高传染性病毒流行期间,为了建立指标显示校情已受控制,以便向该地区居众显示可以过正常生活,有公共卫生专家建议的指标是“连续天每天新增感染人数不超过人”,根据连续天的新增病例数计算,下列各项选项中,一定符合上述指标的是(

①平均数

②标准差

③平均数;且标准差

④平均数;且极差小于或等于

⑤众数等于且极差小于或等于.

A.①②B.③④C.③④⑤D.④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解甲、乙两种产品的质量,从中分别随机抽取了10件样品,测量产品中某种元素的含量(单位:毫克),如图所示是测量数据的茎叶图.规定:当产品中的此中元素的含量不小于18毫克时,该产品为优等品.

(1)试用样品数据估计甲、乙两种产品的优等品率;

(2)从乙产品抽取的10件样品中随机抽取3件,求抽到的3件样品中优等品数的分布列及其数学期望

(3)从甲产品抽取的10件样品中有放回地随机抽取3件,也从乙产品抽取的10件样品中有放回地随机抽取3件;抽到的优等品中,记“甲产品恰比乙产品多2件”为事件,求事件的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记焦点在同一条轴上且离心率相同的椭圆为“相似椭圆”.已知椭圆,以椭圆的焦点为顶点作相似椭圆.

(Ⅰ)求椭圆的方程;

(Ⅱ)设直线与椭圆交于两点,且与椭圆仅有一个公共点,试判断的面积是否为定值(为坐标原点)若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体中,是棱上的一条线段,且的中点,是棱上的动点,则

①四面体的体积为定值

②直线到平面的距离为定值

③点到直线的距离为定值

④直线与平面所成的角为定值

其中正确结论的编号是( )

A.①②③B.①②④C.①③④D.②③④

查看答案和解析>>

同步练习册答案