精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的中心在原点,焦点在轴上,离心率.以两个焦点和短轴的两个端点为顶点的四边形的周长为8,面积为

(Ⅰ)求椭圆的方程;

(Ⅱ)若点为椭圆上一点,直线的方程为,求证:直线与椭圆有且只有一个交点.

【答案】(I);(II)详见解析.

【解析】试题分析:

(1)利用题意求得 ,椭圆的方程为

(2)首先讨论当的情况,否则联立直线与椭圆的方程,结合直线的特点整理可得直线与椭圆有且只有一个交点.

试题解析:(Ⅰ)依题意,设椭圆的方程为,焦距为

由题设条件知,

所以 ,或 (经检验不合题意舍去),

故椭圆的方程为

(Ⅱ)当时,由,可得

时,直线的方程为,直线与曲线有且只有一个交点

时,直线的方程为,直线与曲线有且只有一个交点

时,直线的方程为,联立方程组

消去,得.①

由点为曲线上一点,得,可得

于是方程①可以化简为,解得

代入方程可得,故直线与曲线有且有一个交点

综上,直线与曲线有且只有一个交点,且交点为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数(其中是自然对数的底数),.

(1)记函数,且,求的单调增区间;

(2)若对任意,均有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面平面,四边形是菱形, .

(1)求证:

(2)若,且直线与平面所成角为,求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市对创“市级示范性学校”的甲、乙两所学校进行复查验收,对办学的社会满意度一项评价随机访问了20为市民,这20位市民对这两所学校的评分(评分越高表明市民的评价越好)的数据如下:

甲校:58,66,71,58,67,72,82,92,83,86,67,59,86,72,78,59,68,69,73,81;

乙校:90,80,73,65,67,69,81,85,82,88,89,86,86,78,98,95,96,91,76,69,.

检查组将成绩分成了四个等级:成绩在区间的为等,在区间的为等,在区间的为等,在区间等.

(1)请用茎叶图表示上面的数据,并通过观察茎叶图,对两所学校办学的社会满意度进行比较,写出两个统计结论;

(2)估计哪所学校的市民的评分等级为级或级的概率大,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两条直线l1(3+m)x+4y=5﹣3m,l2 2x+(5+m)y=8.当m分别为何值时,l1与l2
(1)相交?
(2)平行?
(3)垂直?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论的单调性;

(2)设,若有两个极值点,且不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某大学自主招生的面试中,考生要从规定的6道科学题,4道人文题共10道题中,随机抽取3道作答,每道题答对得10分,答错或不答扣5分,已知甲、乙两名考生参加面试,甲只能答对其中的6道科学题,乙答对每道题的概率都是,每个人答题正确与否互不影响.

(1)求考生甲得分的分布列和数学期望

(2)求甲,乙两人中至少有一人得分不少于15分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了了解该校学生对于某项运动的爱好是否与性别有关,通过随机抽查110名学生,得到如下2×2的列联表:

喜欢该项运动

不喜欢该项运动

总计

40

20

60

20

30

50

总计

60

50

110

由公式,算得

附表:

0.025

0.01

0.005

5.024

6.635

7.879

参照附表,以下结论正确是( )

A. 以上的把握认为“爱好该项运动与性别有关”

B. 以上的把握认为“爱好该项运动与性别无关”

C. 以上的把握认为“爱好该项运动与性别有关”

D. 以上的把握认为“爱好该项运动与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,平面底面的中点,侧棱

(1)求证:平面

(2)求直线与平面所成角的余弦值.

查看答案和解析>>

同步练习册答案