精英家教网 > 高中数学 > 题目详情

【题目】已知函数y=a+bx,若对于任意一点,过点作与X轴垂直的直线,交函数y=a+bx的图象于点,交函数的图象于点,定义:,若则用函数y=a+bx来拟合YX之间的关系更合适,否则用函数来拟合YX之间的关系

(1)给定一组变量P1(1,4),P2(2,5),p3(3,6),p4(4,5.5),p5(5,5.6),p6(6,5.8),对于函数与函数,试利用定义求Q1,Q2的值,并判断哪一个更适合作为点PI(xi,yi)(i=1,2,3…6)中的YX之间的拟合函数;

(2)若一组变量的散点图符合图象,试利用下表中的有关数据与公式求yx的回归方程, 并预测当时,的值为多少.

表中的

(附:对于一组数据,其回归直线方程的斜率和截距的最小二乘估计分别为

【答案】(1) 选用函数更适合作为变量YX的拟合函数.

(2) ,当x=10时,y的值为8.94.

【解析】分析:(1)分别根据定义求出从而有,因此由定义得选用函数更适合作为变量的拟合函数;(2)利用公式求得从而可得所以关于的线性回归方程为,因此关于的回归方程为时代入所求回归方程可得结果.

详解(1)对于函数,当分别取1,2,3,4,5,6

时对应的函数值为1.5,2,2.5,3,3.5,4,,

此时

=2.5+3+3.5+2.5+2.1+1.8=15.4

对于函数,当分别取1,2,3,4,5,6时对应的函数值为,此时

从而有,因此由定义得选用函数更适合作为变量YX的拟合函数.

(2)在中,令 所以有y=c+dw,

于是可建立y关于w的线性回归方程为

所以

所以y关于w的线性回归方程为

因此y关于x的回归方程为

时,

即可预测当x=10时,y的值为8.94.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在中,,点在线段上.过点于点,将沿折起到的位置(点重合),使得.

(Ⅰ)求证:.

(Ⅱ)试问:当点在线段上移动时,二面角的平面角的余弦值是否为定值?若是,求出其定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点的椭圆 )的左右焦点分别为 为椭圆上的任意一点,且 成等差数列.

(1)求椭圆的标准方程;

(2)直线 交椭圆于 两点,若点始终在以为直径的圆外,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,若成等差数列,且三个内角也成等差数列,则的形状为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在斜三棱柱ABCA1B1C1中,侧面AA1C1C是菱形,AC1A1C交于点O,点EAB的中点.

(1)求证:OE∥平面BCC1B1.

(2)AC1A1B,求证:AC1BC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于不重合的两个平面,给定下列条件:

①存在平面,使得都垂直于

②存在平面,使得都平行于

内有不共线的三点到的距离相等;

④存在异面直线,使得

其中,可以判定平行的条件有( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数若关系式中变量是变量的函数则称函数为可变换函数.例如:对于函数所以变量是变量的函数,所以是可变换函数.

(1)求证:反比例函数不是可变换函数

(2)试判断函数是否是可变换函数并说明理由

(3)若函数为可变换函数求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若为偶函数,求的值并写出的增区间;

(Ⅱ)若关于的不等式的解集为,当时,求的最小值;

(Ⅲ)对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xiyi)(i=12n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是

A. yx具有正的线性相关关系

B. 回归直线过样本点的中心(

C. 若该大学某女生身高增加1cm,则其体重约增加0.85kg

D. 若该大学某女生身高为170cm,则可断定其体重比为58.79kg

查看答案和解析>>

同步练习册答案