精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和为Sn,且Sn=2-(
2
n
+1
)an(n∈N+).
求证:数列{
an
n
}是等比数列;
设数列{2nan}的前n项和为Tn,求数列{
1
Tn
}的前n项和为An
考点:数列的求和,等比关系的确定
专题:等差数列与等比数列
分析:首先由数列递推式求得数列的首项,取n=n-1后作差即可证得数列{
an
n
}是等比数列;由等比数列的通项公式求出数列{an}的通项公式,代入{2nan}后由等差数列的前n项和求得Tn,取倒数后由裂项相消法求得数列
{
1
Tn
}的前n项和为An
解答: 证明:由Sn=2-(
2
n
+1
)an,①
取n=1,得a1=S1=2-(2+1)a1,即a1=
1
2

当n≥2时,Sn-1=2-(
2
n-1
+1)an-1
,②
①-②得,an=-
n+2
n
an+
n+1
n-1
an-1

2n+2
n
an=
n+1
n-1
an-1

an
n
=
1
2
an-1
n-1
(n≥2),
∴数列{
an
n
}是以
1
2
为首项,以
1
2
为公比的等比数列;
∵数列{
an
n
}是以
1
2
为首项,以
1
2
为公比的等比数列,
an
n
=
1
2n
an=
n
2n

则2nan=2n
n
2n
=n

∴Tn=1+2+3+…+n=
n(n+1)
2

1
Tn
=
2
n(n+1)
=2(
1
n
-
1
n+1
)

An=2(1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n
-
1
n+1
)
=2(1-
1
n+1
)=
2n
n+1
点评:本题考查了等比关系的确定,考查了等差数列的前n项和,训练了裂项相消法求数列的前n项和,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在(0,+∞)上的函数A满足:①当x∈[1,3)时,f(x)=1-|x-2|;②f(3x)=3f(x).设关于x的函数F(x)=f(x)-a的零点从小到大依次为x1,x2,…,xn,…,若a∈(1,3),则x1+x2+…+x2014=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在坐标原点,右焦点为F(
7
,0)
,A、B是椭圆C的左、右顶点,D是椭圆C上异于A、B的动点,且△ADB面积的最大值为12.
(1)求椭圆C的方程;
(2)求证:当点P(x0,y0)在椭圆C上运动时,直线l:x0x+y0y=2与圆O:x2+y2=1恒有两个交点,并求直线l被圆O所截得的弦长L的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,P是直线2x+2y-1=0上的一点,Q是射线OP上的一点,满足|OP|•|OQ|=1.
(Ⅰ)求Q点的轨迹;
(Ⅱ)设点M(x,y)是(Ⅰ)中轨迹上任意一点,求x+7y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若△ABC的外接圆是半径为1的圆O,且∠AOB=120°,则
AC
CB
的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,设点M与曲线Ci上任意一点距离的最小值为di(i=1,2),若d1<d2,则称C1比C2更靠近点M,下列为假命题的是(  )
A、C1:x=0比C2:y=0更靠近M(1,-2)
B、C1:y=ex比C2:xy=1更靠近M(0,0)
C、若C1:(x-2)2+y2=1比C2:x2+(y-2)2=1更靠近点M(m,2m),则m>0
D、若m>1,则C1:y2=4x比C2:x-y+m=0更靠近点M(1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,有一个长方形地块ABCD,边AB为2km,AD为4km.,地块的一角是湿地(图中阴影部分),其边缘线AC是以直线AD为对称轴,以A为顶点的抛物线的一部分.现要铺设一条过边缘线AC上一点P的直线型隔离带EF,E,F分别在边AB,BC上(隔离带不能穿越湿地,且占地面积忽略不计).设点P到边AD的距离为t(单位:km),△BEF的面积为S(单位:km2).
(1)求S关于t的函数解析式,并指出该函数的定义域;
(2)是否存在点P,使隔离出的△BEF面积S超过3km2?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
4
-
y2
m2
=1的右焦点到其渐近线的距离等于
3
,则该双曲线的离心率等于(  )
A、
1
2
B、
3
2
C、2
D、
7
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若 a>0,b>0,且
1
a
+
1
b
=
ab
,求a3+b3的最小值.

查看答案和解析>>

同步练习册答案