【题目】已知圆过椭圆的左、右焦点和短轴的端点(点在点上方).为圆上的动点(点不与重合),直线分别与椭圆交于点,其中点构成四边形.
(1)求椭圆的标准方程;
(2)求四边形面积的取值范围.
【答案】(1);(2)
【解析】
(1)根据题意可知,再根据的关系,可求出的值,即可得到椭圆的标准方程;
(2)设出直线的方程,并将其与椭圆方程联立,利用根与系数的关系和弦长公式求出,然后求出,即可求出四边形面积的表达式,进而求出取值范围即可.
(1)由题意可知,则,
所以椭圆的标准方程为.
(2)因为为圆上的动点,且不与重合,所以,直线的斜率存在且不为0.
设直线,直线,
将直线的方程与椭圆的方程联立,得,
消去并整理得,
则,
设,则,
所以,
因为直线与直线平行,所以两直线分别与椭圆相交所得的弦长相等,
用代替,可得,
所以四边形的面积.
因为,所以,
又,当且仅当时取等号,
所以,,
即四边形面积的取值范围为.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程为射线交曲线C于点A,倾斜角为α的直线l过线段OA的中点B且与曲线C交于P、Q两点.
(1)求曲线C的直角坐标方程及直线l的参数方程;
(2)当直线l倾斜角α为何值时, |BP|·|BQ|取最小值, 并求出|BP|·|BQ|最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,.过焦点且垂直于轴的直线与椭圆相交所得的弦长为3,直线与椭圆相切.
(1)求椭圆的标准方程;
(2)设过点的直线与椭圆相交于,两点,若,问直线是否存在?若存在,求直线的斜率的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】口袋中有大小、形状、质地相同的两个白球和三个黑球.现有一抽奖游戏规则如下:抽奖者每次有放回的从口袋中随机取出一个球,最多取球2n+1(n)次.若取出白球的累计次数达到n+1时,则终止取球且获奖,其它情况均不获奖.记获奖概率为.
(1)求;
(2)证明:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱中,侧棱底面,底面三角形是正三角形,E是BC中点,则下列叙述正确的是( )
A.与是异面直线B.平面
C.AE,为异面直线,且D.平面
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点为,抛物线上的点到准线的最小距离为.
(1)求抛物线的方程;
(2)若过点作互相垂直的两条直线、,与抛物线交于两点,与抛物线交于两点,分别为弦的中点,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2020年春季,某出租汽车公同决定更换一批新的小汽车以代替原来报废的出租车,现有采购成本分别为11万元/辆和8万元/辆的A,B两款车型,根据以往这两种出租车车型的数据,得到两款出租车型使用寿命频数表如表:
(1)填写如表,并判断是否有99%的把握认为出租车的使用寿命年数与汽车车有关?
(2)以频率估计概率,从2020年生产的A和B的车型中各随机抽1车,以X表示这2车中使用寿命不低于7年的车数,求X的分布列和数学期望;
(3)根据公司要求,采购成本由出租公司负责,平均每辆出租每年上交公司6万元,其余维修和保险等费用自理,假设每辆出租车的使用寿命都是整数年,用频率估计每辆出租车使用寿命的概率,分别以这100辆出租车所产生的平均利润作为决策依据,如果你是该公司的负责人,会选择采购哪款车型?
参考公式:,其中n=a+b+c+d.
参考数据:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】交强险是车主必须为机动车购买的险种,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系.每年交强险最终保险费计算方法是:交强险最终保险费,其中a为交强险基础保险费,A为与道路交通事故相联系的浮动比率,同时满足多个浮动因素的,按照向上浮动或者向下浮动比率的高者计算.按照我国《机动车交通事故责任强制保险基础费率表》的规定:普通6座以下私家车的交强险基础保险费为950元,交强险费率浮动因素及比率如下表:
交强险浮动因素和浮动费率比率表 | ||
类型 | 浮动因素 | 浮动比率 |
上一个年度未发生有责任道路交通事故 | ||
上两个年度未发生有责任道路交通事故 | ||
上三个及以上年度未发生有责任道路交通事故 | ||
上一个年度发生一次有责任不涉及死亡的道路交通事故 | ||
上一个年度发生两次及以上有责任道路交通事故 | ||
上一个年度发生有责任道路交通死亡事故 |
某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了100辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计结果如下表:
类型 | ||||||
数量 | 25 | 10 | 10 | 25 | 20 | 10 |
以这100辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题.
(1)记X为一辆该品牌车在第四年续保时的费用,求X的分布列与数学期望(数学期望值保留到个位数字);
(2)某二手车销售商专门销售这一品牌的二手车,且将经销商购车后下一年的交强险最终保险费高于交强险基础保险费的车辆记为事故车,假设购进一辆事故车亏损3000元,购进一辆非事故车盈利5000元.
①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至少有一辆是事故车的概率;
②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】区块链技术被认为是继蒸汽机、电力、互联网之后,下一代颠覆性的核心技术区块链作为构造信任的机器,将可能彻底改变整个人类社会价值传递的方式,2015年至2019年五年期间,中国的区块链企业数量逐年增长,居世界前列现收集我国近5年区块链企业总数量相关数据,如表
年份 | 2015 | 2016 | 2017 | 2018 | 2019 |
编号 | 1 | 2 | 3 | 4 | 5 |
企业总数量y(单位:千个) | 2.156 | 3.727 | 8.305 | 24.279 | 36.224 |
注:参考数据(其中z=lny).
附:样本(xi,yi)(i=1,2,…,n)的最小二乘法估计公式为
(1)根据表中数据判断,y=a+bx与y=cedx(其中e=2.71828…,为自然对数的底数),哪一个回归方程类型适宜预测未来几年我国区块链企业总数量?(给出结果即可,不必说明理由)
(2)根据(1)的结果,求y关于x的回归方程(结果精确到小数点后第三位);
(3)为了促进公司间的合作与发展,区块链联合总部决定进行一次信息化技术比赛,邀请甲、乙、丙三家区块链公司参赛比赛规则如下:①每场比赛有两个公司参加,并决出胜负;②每场比赛获胜的公司与未参加此场比赛的公司进行下一场的比赛;③在比赛中,若有一个公司首先获胜两场,则本次比赛结束,该公司就获得此次信息化比赛的“优胜公司”,已知在每场比赛中,甲胜乙的概率为,甲胜丙的概率为,乙胜丙的概率为,请通过计算说明,哪两个公司进行首场比赛时,甲公司获得“优胜公司”的概率最大?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com