(本小题满分12分)
甲,乙两人进行乒乓球比赛,约定每局胜者得分,负者得分,比赛进行到有一人比对方多分或打满局时停止.设甲在每局中获胜的概率为,且各局胜负相互独立.若第二局比赛结束时比赛停止的概率为.
(1)求的值;
(2)设表示比赛停止时比赛的局数,求随机变量的分布列和数学期望。
(1) (2) 随机变量的分布列为:
【解析】
试题分析:(1)当甲连胜2局或乙连胜2局时,第二局比赛结束时比赛停止,
故,解得或.
又,所以. ……6分
(2)依题意知的所有可能取值为2,4,6.
,,,
所以随机变量的分布列为:
所以的数学期望. ……12分
考点:本小题主要考查相互独立事件同时发生的概率的计算和离散型随机变量的分布列和期望的计算,考查学生应用数学知识分析、解决实际问题的能力,难度一般.
点评:求离散型随机变量的分布列,首先要根据具体情况确定的取值情况,然后利用排列、组合和概率知识求出取各个值的概率,求离散型随机变量的期望关键是写出离散型随机变量的分布列,然后利用公式计算.
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com