分析 (1)由题意可得-2m2+m+3>0,且-2m2+m+3>0为正偶数,由此求得m的值,可得函数f(x)的解析式.
(2)由条件利用对数函数的定义域和单调性、二次函数的单调性,从而求得a的范围.
解答 解:(1)∵$f(x)={x^{-2{m^2}+m+3}}$在(0,+∞)上单调递增,∴-2m2+m+3>0,∴$-1<m<\frac{3}{2}$.
又m∈Z,m=0或m=1.
再根据f(x)为偶函数,可得-2m2+m+3为正偶数,故m=1,f(x)=x2 .
(2)g(x)=loga[f(x)-ax](a>0,a≠1)在(2,3)上为增函数,
而$g(x)={log_a}({x^2}-ax)$由y=logau和$u={x^{_2}}-ax$复合而成,
当0<a<1时,y=logau减函数,故u=x2-ax 在(2,3)为增函数,故不满足条件.
∴$\left\{{\begin{array}{l}{a>1}\\{\frac{a}{2}≤2}\\{4-2a≥0}\end{array}}\right.$,求得1<a≤2.
点评 本题主要考查函数的单调性、奇偶性,复函数的单调性,体现了转化、分类讨论的数学思想,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [$\frac{1}{3}$,1) | B. | ($\frac{1}{3}$,1) | C. | [$\frac{2}{3}$,1) | D. | ($\frac{2}{3}$,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [-9,1) | B. | (-9,1) | C. | [0,+∞) | D. | [-9,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com