精英家教网 > 高中数学 > 题目详情

【题目】现有8名马拉松比赛志愿者,其中志愿者通晓日语,通晓俄语,通晓英语,从中选出通晓日语、俄语和英语的志愿者各1名,组成一个小组.

列出基本事件;

被选中的概率;

不全被选中的概率.

【答案】(1)见解析;(2);(3)

【解析】

利用列举法能求出基本事件;M表示被选中,利用列举法求出M中含有6个基本事件,由此能求出被选中的概率;N表示不全被选中,则表示全被选中,利用对立事件概率计算公式能求出不全被选中的概率.

现有8名马拉松比赛志愿者,其中志愿者通晓日语,

通晓俄语,通晓英语,

从中选出通晓日语、俄语和英语的志愿者各1名,组成一个小组.

基本事件空间

,共18个基本事件.

由于每个基本事件被选中的机会相等,

这些基本事件是等可能发生的,

M表示“被选中”,

,含有6个基本事件,

被选中的概率

N表示“不全被选中”,则表示“全被选中”,

,含有3个基本事件,

不全被选中的概率

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数fx=-,若xRfx)满足f-x=-fx).

1)求实数a的值;

2)判断函数fx)(xR)的单调性,并说明理由;

3)若对任意的tR,不等式ft2-4t+f-k)<0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直角梯形所在的平面垂直于平面.

(1)若的中点,求证:平面

(2)求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数y=f(x)的定义域为D,若对于任意的x1 , x2∈D,当x1+x2=2a时,恒有f(x1)+f(x2)=2b,则称点(a,b)为函数y=f(x)的对称中心.研究函数f(x)=x+sinπx﹣3的某个对称中心,并利用对称中心的上述定义,可求得f( )+f( )+…+f( )+f( )的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= x3+2x2+3x(x∈R)的图象为曲线C,问:是否存在一条直线与曲线C同时切于两点?若存在,求出符合条件的所在直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的可导函数的导函数为,满足,且为偶函数,,则不等式的解集为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c.已知bcosC+ccosB=2acosA.
(1)求角A的大小;
(2)若 = ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若在区间上单调递增,求实数的取值范围;

(2)若在区间上,函数的图象恒在曲线下方,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

(Ⅰ)如果存在x1x2∈[0,2],使得g(x1)-g(x2)≥M成立,求满足上述条件的最大整数M

(Ⅱ)如果对于任意的都有f(s)≥g(t)成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案