(本小题满分13分)
设定义在R上的函数f(x)=a0x4+a1x3+a2x2+a3x+a4(a0,a1,a2,a3,a4∈R)当x=-1时,f(x)取得极大值,且函数y=f(x+1)的图象关于点(-1,0)对称.
(Ⅰ)求函数f(x)的表达式;
(Ⅱ)试在函数y=f(x)的图象上求两点,使以这两点为切点的切线互相垂直,且切点的横坐标都在区间[-,]上;
(Ⅲ)设xn=,ym=(m,n∈N?),求证:|f(xn)-f(ym)|<.
解:(Ⅰ)将函数y=f(x+1)的图象向右平移一个单位,得到函数y=f(x)的图象,
∴函数y=f(x)的图象关于点(0,0)对称,即函数y=f(x)是奇函数,
∴f(x)=a1x3+a3x.
∴f′(x)=3a1x2+a3.
由题意得:.
所以,f(x)=x3-x.经检验满足题意. (4分)
(Ⅱ)由(Ⅰ)可得,f′(x)=x2-1.
故设所求两点为(x1,f(x1)),(x2,f(x2)),(x1,x2∈[-,])
得f′(x1)·f′(x2)=(x-1)(x-1)=-1.
∵x-1,x-1∈[-1,1],
∴或
∴或
∴满足条件的两点的坐标为:(0,0),或(0,0),. (8分)
(Ⅲ)∵xn==1-,(n∈N)
∴xn∈
当x∈时,导函数f′(x)<0,即函数f(x)在上递减,
得f(xn)∈,
即f(xn)∈.
易知ym∈,用导数可求f(ym)在(-,-1)上递增;在(-1,-)上递减,
∵f(-)=·(-)3+=,
f(-)=·(-)3+=,
∴f(-)<f(-),
∴f(ym)∈(f(-),f(-1)],
即f(ym)∈.
∴|f(xn)-f(ym)|=f(ym)-f(xn)<-(-)=.
【解析】略
科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题
(本小题满分13分)已知函数.
(1)求函数的最小正周期和最大值;
(2)在给出的直角坐标系中,画出函数在区间上的图象.
(3)设0<x<,且方程有两个不同的实数根,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题
(本小题满分13分)已知定义域为的函数是奇函数.
(1)求的值;(2)判断函数的单调性;
(3)若对任意的,不等式恒成立,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题
(本小题满分13分)如图,正三棱柱的所有棱长都为2,为的中点。
(Ⅰ)求证:∥平面;
(Ⅱ)求异面直线与所成的角。www.7caiedu.cn
[来源:KS5
U.COM
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题
(本小题满分13分)
已知为锐角,且,函数,数列{}的首项.
(1) 求函数的表达式;
(2)在中,若A=2,,BC=2,求的面积
(3) 求数列的前项和
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com