精英家教网 > 高中数学 > 题目详情
设F1,F2分别为双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点,过F2的直线交双曲线的右支于A,B两点,设△AF1F2和△BF1F2的内心分别为C,D,若当|CD|=
9a
4
时,直线的倾斜角的正弦为
8
9
.则双曲线的离心率为
 
考点:双曲线的简单性质
专题:计算题,直线与圆,圆锥曲线的定义、性质与方程
分析:充分利用平面几何图形的性质解题.因从同一点出发的切线长相等,得|AM|=|AN|,|F1M|=|F1E|,|F2N|=|F2E|,再结合双曲线的定义得|F1E|-|F2E|=2a,从而即可求得△AF1F2的内心的横坐标a,即有CD⊥x轴,在△CF2D中,运用解直角三角形知识,可得|CD|=(c-a)(tan
θ
2
+tan(90°-
θ
2
))=
9a
4
,运用切化弦和二倍角公式化简即可得到离心率.
解答: 解:记△AF1F2的内切圆圆心为C,
边AF1、AF2、F1F2上的切点分别为M、N、E,
易见C、E横坐标相等,则|AM|=|AN|,|F1M|=|F1E|,|F2N|=|F2E|,
由|AF1|-|AF2|=2a,
即|AM|+|MF1|-(|AN|+|NF2|)=2a,得|MF1|-|NF2|=2a,
即|F1E|-|F2E|=2a,记C的横坐标为x0,则E(x0,0),
于是x0+c-(c-x0)=2a,得x0=a,
同样内心D的横坐标也为a,则有CD⊥x轴,
由直线的倾斜角θ的正弦为
8
9
,则∠OF2D=
θ
2
,∠CF2O=90°-
θ
2

在△CF2D中,|CD|=(c-a)(tan
θ
2
+tan(90°-
θ
2
))=(c-a)•
1+tan2
θ
2
tan
θ
2

=(c-a)•
cos2
θ
2
+sin2
θ
2
sin
θ
2
cos
θ
2
=
2
sinθ
•(c-a)=
2
8
9
•(c-a)=
9a
4

则c-a=a,即c=2a,
即有e=
c
a
=2.
故答案为:2.
点评:本题考查双曲线的定义、方程和性质,考查三角形的内心的概念,考查三角函数的化简和求值,考察离心率的求法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

执行如图所示的程序框图.若输出S=15,则框图中①处可以填入
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列 {an}中,已知 a1=a2=1,an+an+2=λ+2an+1,n∈N*,λ为常数.
(1)证明:a1,a4,a5成等差数列;
(2)设 cn=2an+2-an,求数列 的前n项和 Sn
(3)当λ≠0时,数列 {an-1}中是否存在三项 as+1-1,at+1-1,ap+1-1成等比数列,且s,t,p也成等比数列?若存在,求出s,t,p的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2-3x+2=0},集合B={x|m<x≤2m+9}.
(Ⅰ)若A⊆B,求实数m的取值范围;
(Ⅱ)若A∩B≠∅,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,与函数f(x)=ln(x+1)有相同定义域的是(  )
A、y=
x+1
B、y=
1
x+1
C、y=|x+1|
D、y=
1
x+1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
AB
|=4,|
CA
|=3,且
AB
CA
夹角为
3
,则
AB
AC
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,A,B分别是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左右顶点,F为其右焦点,2是|AF|与|FB|的等差中项,
3
是|AF|与|FB|的等比中项.
(1)求椭圆C的方程;
(2)已知点P是椭圆C上异于A,B的动点,直线l过点A且垂直于x轴,若过F作直线FQ垂直于AP,并交直线l于点Q.证明:Q,P,B三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a1+a2=7,a3=8,令bn=
1
anan+1
,数列{bn}的前n项和为Tn
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{bn}的前n项和Tn
(Ⅲ)是否存在正整数m,n(1<m<n),使得T1,Tm,Tn成等比数列?若存在,求出所有的m,n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l的参数方程为
x=1+
2
t
y=
2
t
(t为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρ=
sinθ
1-sin2θ

(1)写出直线l的极坐标方程与曲线C的普通方程;
(2)若点 P是曲线C上的动点,求 P到直线l的距离的最小值,并求出 P点的坐标.

查看答案和解析>>

同步练习册答案