精英家教网 > 高中数学 > 题目详情

若函数数学公式,则函数F(x)=xf(x)-1零点个数为


  1. A.
    2
  2. B.
    3
  3. C.
    4
  4. D.
    5
B
分析:本题即函数f(x)的图象与函数y= 的图象的交点个数,在同一坐标系中画出两个函数图象,数形结合可得两个函数的图象的交点个数.
解答:解:∵函数,故函数F(x)=xf(x)-1零点个数,
即方程f(x)= 的根的根数,即函数f(x)的图象与函数y= 的图象的交点个数.
在同一坐标系中画出两个函数图象如下图所示:
由图可知函数y=f(x)与函数y=图象共有3个交点,分别为A(-1,-1)、B(1,1)、C(3,),
故函数F(x)=xf(x)-1的零点个数为3个,
故选B.
点评:本题考查的知识点是函数零点的判定定理,其中将求函数零点的问题转化为求两个函数图象交点的问题是解答本题的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=ax+blog2(x+
x2+1
)+1在(-∞,0)上有最小值-3(a,b为非零常数),则函数f(x)在(0,+∞)上有最
 
值为
 

查看答案和解析>>

科目:高中数学 来源:2010年河北省高二第二学期期末考试数学(理)试卷 题型:填空题

给出下列三个命题:

①若函数,则函数f(x)的极值点个数为1个。

②若

③若是定义在R上的函数,则是函数处取得极值的必要不充分条件。

其中真命题是_________(把正确命题的序号都填上)。

 

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年黑龙江省大庆实验中学高一(上)期末数学试卷(解析版) 题型:选择题

若函数,则函数f(x)的周期( )
A.π
B.
C.2π
D.无周期

查看答案和解析>>

同步练习册答案