精英家教网 > 高中数学 > 题目详情

【题目】已知直线l1:4x﹣3y+11=0和直线l2:x=﹣1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是(
A.
B.2
C.
D.3

【答案】D
【解析】解:如图所示,
过点P分别作PM⊥l1 , PN⊥l2 , 垂足分别为M,N.
设抛物线的焦点为F(1,0),由抛物线的定义可得|PN|=|PF|,
∴|PM|+|PN|=|PM|+|PF|,当三点M,P,F共线时,
|PM|+|PF|取得最小值.
其最小值为点F到直线l1的距离,∴|FM|=
故选:D.
如图所示,过点P分别作PM⊥l1 , PN⊥l2 , 垂足分别为M,N.设抛物线的焦点为F,由抛物线的定义可得|PN|=|PF|,求|PM|+|PN|转化为求|PM|+|PF|,当三点M,P,F共线时,|PM|+|PF|取得最小值.利用点到直线的距离公式即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】直线l1 , l2分别过点A(3 ,2),B( ,6),它们分别绕点A,B旋转,但始终保持l1⊥l2 . 若l1与l2的交点为P,坐标原点为O,则线段OP长度的取值范围是( )
A.[3,9]
B.[3,6]
C.[6,9]
D.[9,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)当时,求在区间上的最大值和最小值.

)解关于的不等式

)当时,若存在,使得,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对某班50人进行智力测验,其得分如下:

48,64,52,86,71,48,64,41,86,79,71,68,82,84,68,64,62,68,81,57,90,52,74,73,56,78,47,66,55,64,56,88,69,40,73,97,68,56,67,59,70,52,79,44,55,69,62,58,32,58.

(1)这次测试成绩的最大值和最小值各是多少?

(2)[30,100)平分成7个小区间,试画出该班学生智力测验成绩的频数分布图.

(3)分析这个频数分布图,你能得出什么结论?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】厂为了对新研发的一种产品进行合理定价将该产品按事先拟定的价格进行试销得到如下数据

单价x/

8

8.2

8.4

8.6

8.8

9

销量y/

90

84

83

80

75

68

(1)求线性回归方程=x+其中=-20 =- .

(2)预计在今后的销售中销量与单价仍然服从(1)中的关系且该产品的成本是4/为使工厂获得最大利润该产品的单价应定为多少元?(利润=销售收入-成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=1,a2n=n﹣an , a2n+1=an+1,则a1+a2+a3+…+a100=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面平面 为等边三角形, 分别为的中点.

(1)求证: 平面.

(2)求证:平面平面.

(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=px﹣ ﹣2lnx.
(Ⅰ)若p=2,求曲线f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若函数f(x)在其定义域内为增函数,求正实数p的取值范围;
(Ⅲ)设函数g(x)= (e为自然对数底数),若在[1,e]上至少存在一点x0 , 使得f(x0)>g(x0)成立,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 =1(a>0,b>0),A1 , A2是实轴顶点,F是右焦点,B(0,b)是虚轴端点,若在线段BF上(不含端点)存在不同的两点p1(i=1,2),使得△PiA1A2(i=1,2)构成以A1A2为斜边的直角三角形,则双曲线离心率e的取值范围是(
A.( ,+∞)
B.( ,+∞)
C.(1,
D.(

查看答案和解析>>

同步练习册答案