Èçͼ£¬PÊÇË«ÇúÏß
x2
a2
-
y2
b2
=1(a£¾0£¬b£¾0£¬xy¡Ù0)
ÉϵĶ¯µã£¬F1¡¢F2ÊÇË«ÇúÏߵĽ¹µã£¬MÊÇ¡ÏF1PF2µÄƽ·ÖÏßÉϵÄÒ»µã£¬ÇÒ
F2M
MP
=0
£®ÓÐһͬѧÓÃÒÔÏ·½·¨Ñо¿|OM|£ºÑÓ³¤F2M½»PF1ÓÚµãN£¬¿ÉÖª¡÷PNF2ΪµÈÑüÈý½ÇÐΣ¬ÇÒMΪF2NµÄÖе㣬µÃ|OM|=
1
2
|NF1|=¡­=a
£®ÀàËƵأºPÊÇÍÖÔ²
x2
a2
+
y2
b2
=1(a£¾b£¾0£¬xy¡Ù0)
ÉϵĶ¯µã£¬F1¡¢F2ÊÇÍÖÔ²µÄ½¹µã£¬MÊÇ¡ÏF1PF2µÄƽ·ÖÏßÉϵÄÒ»µã£¬ÇÒ
F2M
MP
=0
£®Ôò|OM|µÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
·ÖÎö£ºÍÖÔ²ÓëË«ÇúÏ߶¼ÊÇƽÃæÉϵ½¶¨µãºÍ¶¨Ö±Ïß¾àÀëÖ®±ÈΪ¶¨ÖµµÄ¶¯µãµÄ¹ì¼££¬¹ÊËüÃǵÄÑо¿·½·¨¡¢ÐÔÖʶ¼ÓÐÏàËÆÖ®´¦£¬ÎÒÃÇÓÉÌâÄ¿Öиù¾ÝË«ÇúÏßµÄÐÔÖÊ£¬Ì½¾¿|OM|Öµ·½·¨£¬Àà±ÈÍÖÔ²µÄÐÔÖÊ£¬ÍƶϳöÍÖÔ²ÖÐ|OM|µÄÈ¡Öµ·¶Î§£®
½â´ð£º½â£ºÑÓ³¤F2M½»PF1ÓÚµãN£¬¿ÉÖª¡÷PNF2ΪµÈÑüÈý½ÇÐΣ¬ÇÒMΪF2MµÄÖе㣬
Ôò|OM|=
1
2
|NF1|=a-|F2M|
¡ßa-c£¼|F2M|£¼a
¡à0£¼|OM|£¼c=
a2-b2

¡à|OM|µÄÈ¡Öµ·¶Î§ÊÇ(0£¬
a2-b2
)

¹ÊÑ¡D£®
µãÆÀ£ºÀà±ÈÍÆÀíµÄÒ»°ã²½ÖèÊÇ£º£¨1£©ÕÒ³öÁ½ÀàÊÂÎïÖ®¼äµÄÏàËÆÐÔ»òÒ»ÖÂÐÔ£»£¨2£©ÓÃÒ»ÀàÊÂÎïµÄÐÔÖÊÈ¥ÍƲâÁíÒ»ÀàÊÂÎïµÄÐÔÖÊ£¬µÃ³öÒ»¸öÃ÷È·µÄÃüÌ⣨²ÂÏ룩£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÒÑÖªµÈÖáË«ÇúÏßCµÄÁ½¸ö½¹µãF1¡¢F2ÔÚÖ±Ïßy=xÉÏ£¬Ï߶ÎF1F2µÄÖеãÊÇ×ø±êÔ­µã£¬ÇÒË«ÇúÏß¾­¹ýµã£¨3£¬
3
2
£©£®
£¨1£©ÈôÒÑÖªÏÂÁÐËù¸øµÄÈý¸ö·½³ÌÖÐÓÐÒ»¸öÊǵÈÖáË«ÇúÏßCµÄ·½³Ì£º¢Ùx2-y2=
27
4
£»¢Úxy=9£»¢Ûxy=
9
2
£®ÇëÈ·¶¨ÄĸöÊǵÈÖáË«ÇúÏßCµÄ·½³Ì£¬²¢Çó³ö´ËË«ÇúÏßµÄʵÖ᳤£»
£¨2£©ÏÖÒªÔÚµÈÖáË«ÇúÏßCÉÏÑ¡Ò»´¦P½¨Ò»×ùÂëÍ·£¬ÏòA£¨3£¬3£©¡¢B£¨9£¬6£©Á½µØתÔË»õÎ¾­²âË㣬´ÓPµ½A¡¢´ÓPµ½BÐÞ½¨¹«Â·µÄ·ÑÓö¼ÊÇÿµ¥Î»³¤¶ÈaÍòÔª£¬ÔòÂëÍ·Ó¦½¨Ôں䦣¬²ÅÄÜʹÐÞ½¨Á½Ìõ¹«Â·µÄ×Ü·ÑÓÃ×îµÍ£¿
£¨3£©Èçͼ£¬º¯Êýy=
3
3
x+
1
x
µÄͼÏóÒ²ÊÇË«ÇúÏߣ¬Çë³¢ÊÔÑо¿´ËË«ÇúÏßµÄÐÔÖÊ£¬ÄãÄܵõ½ÄÄЩ½áÂÛ£¿£¨±¾Ð¡Ì⽫°´ËùµÃµ½µÄË«ÇúÏßÐÔÖʵÄÊýÁ¿ºÍÖÊÁ¿×ÃÇé¸ø·Ö£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬µãPÊÇË«ÇúÏßC1£º
x2
a2
-
y2
b2
=1(a£¾0£¬b£¾0)
ºÍÔ²C2£ºx2+y2=a2+b2µÄÒ»¸ö½»µã£¬QÊÇÔ²C2ÔÚxÖáÏ·½µÄÒ»µã£¬ÇÒ¡ÏF1QP=60o£¬ÆäÖÐF1¡¢F2ÊÇË«ÇúÏßC1µÄÁ½¸ö½¹µã£¬ÔòË«ÇúÏßC1µÄÀëÐÄÂÊΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑÖªÍÖÔ²E£º
x2
a2
+
y2
b2
=1
£¨a£¾b£¾0£©£¬½¹µãΪF1¡¢F2£¬Ë«ÇúÏßG£ºx2-y2=m£¨m£¾0£©µÄ¶¥µãÊǸÃÍÖÔ²µÄ½¹µã£¬ÉèPÊÇË«ÇúÏßGÉÏÒìÓÚ¶¥µãµÄÈÎÒ»µã£¬Ö±ÏßPF1¡¢PF2ÓëÍÖÔ²µÄ½»µã·Ö±ðΪA¡¢BºÍC¡¢D£¬ÒÑÖªÈý½ÇÐÎABF2µÄÖܳ¤µÈÓÚ8
2
£¬ÍÖÔ²Ëĸö¶¥µã×é³ÉµÄÁâÐεÄÃæ»ýΪ8
2
£®
£¨1£©ÇóÍÖÔ²EÓëË«ÇúÏßGµÄ·½³Ì£»
£¨2£©ÉèÖ±ÏßPF1¡¢PF2µÄбÂÊ·Ö±ðΪk1ºÍk2£¬Ì½Çók1ºÍk2µÄ¹Øϵ£»
£¨3£©ÊÇ·ñ´æÔÚ³£Êý¦Ë£¬Ê¹µÃ|AB|+|CD|=¦Ë|AB|•|CD|ºã³ÉÁ¢£¿Èô´æÔÚ£¬ÊÔÇó³ö¦ËµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
¾«Ó¢¼Ò½ÌÍø

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑÖªÍÖÔ²E£º
x2
8
+
y2
4
=1
½¹µãΪF1¡¢F2£¬Ë«ÇúÏßG£ºx2-y2=4£¬ÉèPÊÇË«ÇúÏßGÉÏÒìÓÚ¶¥µãµÄÈÎÒ»µã£¬Ö±ÏßPF1¡¢PF2ÓëÍÖÔ²µÄ½»µã·Ö±ðΪA¡¢BºÍC¡¢D£®
£¨1£©ÉèÖ±ÏßPF1¡¢PF2µÄбÂÊ·Ö±ðΪk1ºÍk2£¬Çók1•k2µÄÖµ£»
£¨2£©ÊÇ·ñ´æÔÚ³£Êý¦Ë£¬Ê¹µÃ|AB|+|CD|=¦Ë|AB|•|CD|ºã³ÉÁ¢£¿Èô´æÔÚ£¬ÊÔÇó³ö¦ËµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ÉϺ££©Èçͼ£¬ÒÑ֪˫ÇúÏßC1£º
x2
2
-y2=1
£¬ÇúÏßC2£º|y|=|x|+1£¬PÊÇƽÃæÄÚÒ»µã£¬Èô´æÔÚ¹ýµãPµÄÖ±ÏßÓëC1£¬C2¶¼Óй«¹²µã£¬Ôò³ÆPΪ¡°C1-C2Ð͵㡱
£¨1£©ÔÚÕýÈ·Ö¤Ã÷C1µÄ×ó½¹µãÊÇ¡°C1-C2Ð͵㡰ʱ£¬ÒªÊ¹ÓÃÒ»Ìõ¹ý¸Ã½¹µãµÄÖ±Ïߣ¬ÊÔд³öÒ»ÌõÕâÑùµÄÖ±Ïߵķ½³Ì£¨²»ÒªÇóÑéÖ¤£©£»
£¨2£©ÉèÖ±Ïßy=kxÓëC2Óй«¹²µã£¬ÇóÖ¤|k|£¾1£¬½ø¶øÖ¤Ã÷Ô­µã²»ÊÇ¡°C1-C2Ð͵㡱£»
£¨3£©ÇóÖ¤£ºÔ²x2+y2=
1
2
Äڵĵ㶼²»ÊÇ¡°C1-C2Ð͵㡱

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸