精英家教网 > 高中数学 > 题目详情

【题目】某地区高考实行新方案,规定:语文、数学和英语是考生的必考科目,考生还须从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考科目.若一名学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则,称该学生选考方案待确定.例如,学生甲选择“物理、化学和生物”三个选考科目,则学生甲的选考方案确定,“物理、化学和生物”为其选考方案.

某学校为了了解高一年级420名学生选考科目的意向,随机选取30名学生进行了一次调查,统计选考科目人数如下表:

性别

选考方案确定情况

物理

化学

生物

历史

地理

政治

男生

选考方案确定的有6人

6

6

3

1

2

0

选考方案待确定的有8人

5

4

0

1

2

1

女生

选考方案确定的有10人

8

9

6

3

3

1

选考方案待确定的有6人

5

4

0

0

1

1

(Ⅰ)试估计该学校高一年级确定选考生物的学生有多少人?

(Ⅱ)写出选考方案确定的男生中选择“物理、化学和地理”的人数.(直接写出结果)

(Ⅲ)从选考方案确定的男生中任选2名,试求出这2名学生选考科目完全相同的概率.

【答案】;(2;(

【解析】试题分析:根据表格中数据,由古典概型概率公式可得选生物的频率为从而可得选择生物的人数约为;(根据表格数据可得选考方案确定的男生中选择物理、化学和地理的人数;(利用列举法可得任取两名男生的基本事件有 种,其中两名男生所学科目相同的基本事件共有 种,根据古典概型概率公式可得两名男生所学科目相同的概率.

试题解析:(Ⅰ)设该学校选考方案确定的学生中选考生物的学生为

因为在选考方案确定的学生的人中,

选生物的频率为

所以选择生物的概率约为

所以选择生物的人数约为.

2.

Ⅲ)设选择物理、生物、化学的学生分别为

选择物理、化学、历史的学生为,

选择物理、化学、地理的学生分别为

所以任取2名男生的基本事件有

所以两名男生所学科目相同的基本事件共有四个,分别为概率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左、右焦点为顶点的三角形的周长为,一双曲线的顶点是该椭圆的焦点,且它的实轴长等于虚轴长,设为该双曲线上异于顶点的任一点,直线与椭圆的交点分别为,其中轴的同一侧.

(1)求椭圆和双曲线的标准方程;

(2)是否存在题设中的点,使得?若存在, 求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙二人用4张扑克牌分别是红桃2,红桃3,红桃4,方片4玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.

写出甲、乙二人抽到的牌的所有情况;

甲乙约定,若甲抽到的牌的牌面数字比乙大,则甲胜;否则乙胜,你认为此约定是否公平?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)写出下列两组诱导公式:

①关于的诱导公式;

②关于的诱导公式.

(2)从上述①②两组诱导公式中任选一组,用任意角的三角函数定义给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,关于的方程,给出下列四个命题,其中假命题的个数是(

①存在实数,使得方程恰有个不同的实根;

②存在实数,使得方程恰有个不同的实根;

③存在实数,使得方程恰有个不同的实根;

④存在实数,使得方程恰有个不同的实根.

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是()

A. ,则”是真命题

B. 在同一坐标系中,函数的图象关于轴对称.

C. 命题“,使得”的否定是“,都有

D. ,“”是“”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且过点

(Ⅰ)求椭圆的方程.

(Ⅱ)若 是椭圆上两个不同的动点,且使的角平分线垂直于轴,试判断直线的斜率是否为定值?若是,求出该值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆和点,动圆经过点且与圆相切,圆心的轨迹为曲线

(Ⅰ)求曲线的方程;

(Ⅱ)四边形的顶点在曲线上,且对角线均过坐标原点,若 .

(i) 求的范围;(ii) 求四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱 平面 中点.

1)求证:

2)若 求二面角的余弦值.

查看答案和解析>>

同步练习册答案