精英家教网 > 高中数学 > 题目详情

【题目】对任意正整数n,设an是方程x2+ =1的正根.求证:
(1)an+1>an
(2) + +…+ <1+ + +…+

【答案】
(1)证明:an是方程x2+ =1的正根,

解得an=

由分子有理化,可得an=

=

在n∈N*上递减,

可得an为递增数列,

即为an+1>an


(2)证明:由an= ,可得

=

2n﹣1<

1+4n2﹣4n<1+4n2﹣4n<0,显然成立,

即有 + +…+ <1+ + +…+

<1+ + +…+


【解析】(1)解方程可得an= ,再由分子有理化,结合 在n∈N*上递减,即可得证;(2)求出 = ,分析法可得 ,累加并运用不等式的性质即可得证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】袋中有大小相同的红、黄两种颜色的球各1个,从中任取1只,有放回地抽取3次. 求:
(1)3只全是红球的概率;
(2)3只颜色全相同的概率;
(3)3只颜色不全相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a为实数,函数f(x)=x2﹣|x2﹣ax﹣2|在区间(﹣∞,﹣1)和(2,+∞)上单调递增,则a的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣ax﹣4(a∈R)的两个零点为x1 , x2 , 设x1<x2
(1)当a>0时,证明:﹣2<x1<0;
(2)若函数g(x)=x2﹣|f(x)|在区间(﹣∞,﹣2)和(2,+∞)上均单调递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,∠BAC=10°,∠ACB=30°,将直线BC绕AC旋转得到B1C,直线AC绕AB旋转得到AC1 , 则在所有旋转过程中,直线B1C与直线AC1所成角的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】边长为2的正方形ABCD所在的平面与△CDE所在的平面交于CD,且AE⊥平面CDE,AE=1.

(1)求证:平面ABCD⊥平面ADE;
(2)设点F是棱BC上一点,若二面角A﹣DE﹣F的余弦值为 ,试确定点F在BC上的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,则输出n的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l与曲线y2=4x(y≥0)交于A,D两点(A在D的左侧),A,D两点在x轴上的射影分别为点B,C,且|BC|=2. (Ⅰ)当点B的坐标为(1,0)时,求直线AD的斜率;
(Ⅱ)记△OAD的面积为S1 , 梯形ABCD的面积为S2 , 求 的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P﹣ABC中,平面PAB⊥平面ABC,AP⊥BP,AC⊥BC,∠PAB=60°,∠ABC=45°,D是AB中点,E,F分别为PD,PC的中点.
(Ⅰ)求证:AE⊥平面PCD;
(Ⅱ)求二面角B﹣PA﹣C的余弦值;
(Ⅲ)在棱PB上是否存在点M,使得CM∥平面AEF?若存在,求 的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案