精英家教网 > 高中数学 > 题目详情

【题目】).

(1)求函数的零点;

(2)设均为正整数,且为最简根式,若存在,使得可唯一表示为的形式(),求证:

(3)已知,是否存在,使得

成立,若存在,试求出的值,若不存在,请说明理由.

【答案】(1);(2)证明略;(3)存在.

【解析】

(1)写出F(x)的解析式,解方程F(x)=0,可得零点;

(2)由题意可得,两式相乘可得证明

(3)由条件可得t+s=ts,假设存在n1N*,使得成立,化简整理求出满足条件的t,sn1的值

(1)函数F(x)=f2(x-1)-1=(x-1)2-1,x>1,

F(x)=0,解得x=2(0舍去),

即有F(x)的零点为2

(2)证明:若存在n0N*

使得可唯一表示为的形式(

即有

两式相乘可得22μ|n0=T-(T-1)=1

可得22μ|=1

(3)假设存在n1N*,使得成立

f-1(t)+f-1(s)=1,可得t-1+s-1=1,即t+s=ts

由假设可得

即为

即有

可取t=s=2,n1可取一切正整数,上式成立

则存在n1N*,使得成立

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数为实数.

(1)时,求的最小值

(2)若存在实数,使得对任意实数都有成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,菱形ABCD中,AB=4,∠A=60°,以对角线BD为折痕把△ABD折起,使点A到达如图所示点E的位置,使

(1)求证:BD⊥EC;

(2)求三棱锥B-CE-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数满足:对任何,都有,且当时,,在下列结论中,正确命题的序号是________

对任何,都有;② 函数的值域是

存在,使得;④ “函数在区间上单调递减”的充要条

件是“存在,使得”;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经过市场调查,某种商品在销售中有如下关系:第x)天的销售价格(单位:元/件)为,第x天的销售量(单位:件)为为常数),且在第20天该商品的销售收入为600元(销售收入=销售价格×销售量).

1)求a的值,并求第15天该商品的销售收入;

2)求在这30天中,该商品日销售收入y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若存在正数xy,使得,其中e为自然对数的底数,则实数的取值范围是_____________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,ABCD是正方形,O是正方形的中心,PO底面ABCD,底面边长为aEPC的中点.

(1)求证:平面PAC平面BDE

(2)若二面角EBDC30°,求四棱锥PABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数x,y满足x3<y3,则下列不等式中恒成立的是(  )

A. x>(y B. ln(x2+1)>ln(y2+1)

C. D. tanx>tany

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在梯形中,.将梯形所在的直线旋转一周而形成的曲面所围成的几何体的表面积为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案