【题目】记(,).
(1)求函数的零点;
(2)设、、均为正整数,且为最简根式,若存在,使得可唯一表示为的形式(),求证:;
(3)已知,是否存在,使得
成立,若存在,试求出的值,若不存在,请说明理由.
【答案】(1);(2)证明略;(3)存在.
【解析】
(1)写出F(x)的解析式,解方程F(x)=0,可得零点;
(2)由题意可得,,两式相乘可得证明。
(3)由条件可得t+s=ts,假设存在n1∈N*,使得成立,化简整理求出满足条件的t,s和n1的值。
(1)函数F(x)=f2(x-1)-1=(x-1)2-1,x>1,
由F(x)=0,解得x=2(0舍去),
即有F(x)的零点为2
(2)证明:若存在n0∈N*,
使得可唯一表示为的形式()
即有,
两式相乘可得|ξ2-η2μ|n0=T-(T-1)=1
可得|ξ2-η2μ|=1
(3)假设存在n1∈N*,使得成立
由f-1(t)+f-1(s)=1,可得t-1+s-1=1,即t+s=ts
由假设可得
即为
即有
可取t=s=2,n1可取一切正整数,上式成立。
则存在n1∈N*,使得成立
科目:高中数学 来源: 题型:
【题目】如图,菱形ABCD中,AB=4,∠A=60°,以对角线BD为折痕把△ABD折起,使点A到达如图所示点E的位置,使.
(1)求证:BD⊥EC;
(2)求三棱锥B-CE-D的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义域为的函数满足:对任何,都有,且当时,,在下列结论中,正确命题的序号是________
① 对任何,都有;② 函数的值域是;
③ 存在,使得;④ “函数在区间上单调递减”的充要条
件是“存在,使得”;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经过市场调查,某种商品在销售中有如下关系:第x()天的销售价格(单位:元/件)为,第x天的销售量(单位:件)为(为常数),且在第20天该商品的销售收入为600元(销售收入=销售价格×销售量).
(1)求a的值,并求第15天该商品的销售收入;
(2)求在这30天中,该商品日销售收入y的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,底面边长为a,E是PC的中点.
(1)求证:平面PAC⊥平面BDE;
(2)若二面角E-BD-C为30°,求四棱锥P-ABCD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知实数x,y满足x3<y3,则下列不等式中恒成立的是( )
A. ()x>()y B. ln(x2+1)>ln(y2+1)
C. D. tanx>tany
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com