精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=2cosx(cosx+$\sqrt{3}$sinx).
(1)求函数f(x)的单调递减区间和对称中心;
(2)若0<α<π,且f($\frac{α}{2}$)=$\frac{1}{3}$,求cosα的值.

分析 (1)展开表达式,利用二倍角与两角和的正弦函数,化为一个角的一个三角函数的形式,结合正弦函数的单调增区间求出函数的单调减区间即可.
(2)化简已知可得sin(α+$\frac{π}{6}$)=-$\frac{1}{3}$,结合角的范围利用同角三角函数关系式可求cos(α+$\frac{π}{6}$)的值,由cosα=cos[(α+$\frac{π}{6}$)-$\frac{π}{6}$]利用两角差的余弦函数公式即可求值得解.

解答 解:(1)∵函数f(x)=2cosx($\sqrt{3}$sinx+cosx)=$\sqrt{3}$sin2x+2cos2x=2sin(2x+$\frac{π}{6}$)+1.
∵2kπ+$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$,k∈Z,
∴x∈[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$],k∈Z,
∴函数的单调减区间为:[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$],k∈Z,
(2)∵0<α<π,且f($\frac{α}{2}$)=2sin(α+$\frac{π}{6}$)+1=$\frac{1}{3}$,解得:sin(α+$\frac{π}{6}$)=-$\frac{1}{3}$,
又∵$\frac{π}{6}$<α+$\frac{π}{6}$<$\frac{7π}{6}$,
∴可得:π<α+$\frac{π}{6}$<$\frac{7π}{6}$,cos(α+$\frac{π}{6}$)=-$\sqrt{1-si{n}^{2}(α+\frac{π}{6})}$=-$\frac{2\sqrt{2}}{3}$,
∴cosα=cos[(α+$\frac{π}{6}$)-$\frac{π}{6}$]=cos(α+$\frac{π}{6}$)cos$\frac{π}{6}$+sin(α+$\frac{π}{6}$)sin$\frac{π}{6}$=(-$\frac{2\sqrt{2}}{3}$)×$\frac{\sqrt{3}}{2}$+(-$\frac{1}{3}$)×$\frac{1}{2}$=-$\frac{2\sqrt{6}+1}{6}$.

点评 本题主要考查了三角函数恒等变换的应用,同角三角函数关系式的应用,函数的单调增区间的求法,考查计算能力,熟练记忆和灵活应用相关公式是解题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知不交于同一点的三条直线l1:4x+y-4=0,l2:mx+y=0,l3:x-my-4=0
(1)当这三条直线不能围成三角形时,求实数m的值.
(2)当l3与l1,l2都垂直时,求两垂足间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=|x+1|+|x-4|.
(1)求不等式f(x)≤7的解集;
(2)若存在x0∈R,使得f(x0)≤|2a+3|成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知等差数列的首项为a1,公差为d.则该数列的通项公式为(  )
A.an=a1+d(n+1)B.an=a1+dnC.an=a1+d(n-1)D.an=a1+d(n-2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图所示的水平放置的三角形的直观图中,D′是△A′B′C′中B′C′边的中点,那么A′B′,A′D′,A′C′三条线段对应原图形中线段AB,AD,AC中(  )
A.最长的是AB,最短的是ACB.最长的是AC,最短的是AB
C.最长的是AB,最短的是ADD.最长的是AD,最短的是AC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.判断向量$\overrightarrow{a}与\overrightarrow{b}$否共线:
(1)$\overrightarrow{a}$=-$\frac{3}{2}$$\overrightarrow{e}$,$\overrightarrow{b}$=2$\overrightarrow{e}$(e为非零向量);
(2)$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=-3$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$($\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$为非零且不共线的向量);
(3)$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$(,$\overrightarrow{{e}_{2}}$为非零且不共线的向量).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)已知不等式|2x+t|-t≤8的解集是{x|-5≤x≤4},求实数t;
(2)已知实数x,y,z满足x2+$\frac{1}{4}$y2+$\frac{1}{9}$z2=2,求x+y+z的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=sin2x+$\sqrt{2}$cos(x-$\frac{π}{4}$),则f(x)的值域是[-$\frac{5}{4}$,1+$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数y=3tan(2x+$\frac{π}{3}$)的对称中心坐标是($\frac{kπ}{4}-\frac{π}{6},0$),k∈Z,单调增区间是($-\frac{5π}{12}+\frac{kπ}{2},\frac{π}{12}+\frac{kπ}{2}$),k∈Z.

查看答案和解析>>

同步练习册答案