精英家教网 > 高中数学 > 题目详情
在△ABC中,内角ABC所对的边分别是abc.已知8b=5cC=2B,则cos C等于________.
先用正弦定理求出角B的余弦值,再求解.
,且8b=5cC=2B
所以5csin 2B=8csin B,所以cos B.
所以cos C=cos 2B=2cos2B-1=.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在锐角△ABC中,已知a、b、c分别是三内角A、B、C所对应的边长,且b=2asinB.
(1)求角A的大小;
(2)若b=1,且△ABC的面积为,求a的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知向量.
(1)若,求的值;
(2)在△ABC中,角A、B、C的对边分别是,且满足,若,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在△ABC中,a=,b=,B=45°.求角A、C和边c.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=2sin xcos x+2cos2x+m在区间上的最大值为2.
(1)求常数m的值;
(2)在△ABC中,内角A,B,C所对的边分别为a,b,c,若f(A)=1,sin B=3sin C,△ABC的面积为,求边长a.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在△ABC中,,则边的长为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在△ABC中,内角ABC的对边分别为abc.若asin Bcos Ccsin Bcos Ab,且ab,则∠B=(  ).
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

类比正弦定理,如图,在三棱柱ABC-A1B1C1中,二面角B-AA1-CC-BB1-AB-CC1-A的平面角分别为αβγ,则有________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图, 在中,,边上一点,,则的长为         .

查看答案和解析>>

同步练习册答案