设函数.
(I)求的单调区间;
(II)当0<a<2时,求函数在区间上的最小值.
【解析】第一问定义域为真数大于零,得到..
令,则,所以或,得到结论。
第二问中, ().
.
因为0<a<2,所以,.令 可得.
对参数讨论的得到最值。
所以函数在上为减函数,在上为增函数.
(I)定义域为. ………………………1分
.
令,则,所以或. ……………………3分
因为定义域为,所以.
令,则,所以.
因为定义域为,所以. ………………………5分
所以函数的单调递增区间为,
单调递减区间为. ………………………7分
(II) ().
.
因为0<a<2,所以,.令 可得.…………9分
所以函数在上为减函数,在上为增函数.
①当,即时,
在区间上,在上为减函数,在上为增函数.
所以. ………………………10分
②当,即时,在区间上为减函数.
所以.
综上所述,当时,;
当时,
科目:高中数学 来源:2011-2012学年山东省高三下学期5月高考冲刺文科数学(解析版) 题型:解答题
(本小题满分12分)设函数.
(I)求的单调区间;
(II)当0<a<2时,求函数在区间上的最小值.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建师大附中高三上学期期中考试理科数学卷 题型:解答题
(本小题12分)设函数,
(I)求的最小正周期以及单调增区间;
(II)当时,求的值域;
(Ⅲ)若,求的值.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建师大附中高三上学期期中考试理科数学卷 题型:解答题
(本小题12分)设函数,
(I)求的最小正周期以及单调增区间;
(II)当时,求的值域;
(Ⅲ)若,求的值.
查看答案和解析>>
科目:高中数学 来源:2012年四川省泸州市高考数学一诊试卷(理科)(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com