精英家教网 > 高中数学 > 题目详情
命题p:?x∈R,函数,则( )
A.p是假命题;¬p:?x∈R,
B.p是假命题;¬p:?x∈R,
C.p是真命题;¬p:?x∈R,
D.p是真命题;¬p:?x∈R,
【答案】分析:先利用三角函数的二倍角公式化简函数,再利用公式化简三角函数,利用三角函数的有界性求出最大值,判断原命题的真假.再利用含量词的命题的否定形式:将“任意”与“存在”互换;结论否定,写出命题的否定.
解答:解:y=2cos2x+sin2x
=1+cos2x+sin2x
=1+
=1+≤3
故命题p为真,
又∵命题p:?x∈R,函数
则¬p为:?x∈R,
故选D.
点评:本题考查命题的否定、三角函数的二倍角余弦公式将三角函数降幂、利用公式化简三角函数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出如下命题:
命题p:已知函数y=f(x)=
1-x3
,则|f(a)|<2(其中f(a)表示函数y=f(x)在x=a时的函数值);
命题q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0},且A∩B=∅;
求实数a的取值范围,使命题p,q中有且只有一个为真命题.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

给出如下命题:
命题p:已知函数数学公式,则|f(a)|<2(其中f(a)表示函数y=f(x)在x=a时的函数值);
命题q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0},且A∩B=∅;
求实数a的取值范围,使命题p,q中有且只有一个为真命题.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

给出如下命题:
命题p:已知函数y=f(x)=
1-x
3
,则|f(a)|<2(其中f(a)表示函数y=f(x)在x=a时的函数值);
命题q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0},且A∩B=∅;
求实数a的取值范围,使命题p,q中有且只有一个为真命题.

查看答案和解析>>

科目:高中数学 来源:《第1章 集合与函数概念》2009年单元测试卷(忠州中学)(解析版) 题型:解答题

给出如下命题:
命题p:已知函数,则|f(a)|<2(其中f(a)表示函数y=f(x)在x=a时的函数值);
命题q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0},且A∩B=∅;
求实数a的取值范围,使命题p,q中有且只有一个为真命题.

查看答案和解析>>

同步练习册答案