精英家教网 > 高中数学 > 题目详情

【题目】已知pq

1)若pq充分不必要条件,求实数的取值范围;

2)若p”q”的充分不必要条件,求实数的取值范围.

【答案】(1);(2)

【解析】

试题分析:因为的充分不必要条件,所以.先解出的集合:,再因式分解,利用数轴列出不等关系:,解出实数的取值范围:.(2)若的充分不必要条件,则的充分不必要条件.利用数轴列出不等关系:,解出实数的取值范围:.解答本题时,不必要条件的理解为不等式组中等于号不能同时取到,从区间长度可知,两个等号不可同时取到,因此必要性不成立.

试题解析:解:2

⑴∵的充分不必要条件,

的真子集.

实数的取值范围为7

⑵∵“的充分不必要条件,

的充分不必要条件.

实数的取值范围为12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=alnx+ax2+bx,(a,b∈R).
(1)设a=1,f(x)在x=1处的切线过点(2,6),求b的值;
(2)设b=a2+2,求函数f(x)在区间[1,4]上的最大值;
(3)定义:一般的,设函数g(x)的定义域为D,若存在x0∈D,使g(x0)=x0成立,则称x0为函数g(x)的不动点.设a>0,试问当函数f(x)有两个不同的不动点时,这两个不动点能否同时也是函数f(x)的极值点?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某宾馆在装修时,为了美观,欲将客房的窗户设计成半径为1m的圆形,并用四根木条将圆分成如图所示的9个区域,其中四边形ABCD为中心在圆心的矩形,现计划将矩形ABCD区域设计为可推拉的窗口.

(1)若窗口ABCD为正方形,且面积大于 m2(木条宽度忽略不计),求四根木条总长的取值范围;
(2)若四根木条总长为6m,求窗口ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】199个数字中取3个偶数和4个奇数,试问:

(1)能组成多少个没有重复数字的七位数?

(2)(1)中的七位数中,偶数排在一起,奇数也排在一起的有多少个?

(3)(1)中任意2个偶数都不相邻的七位数有多少个?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某宾馆在装修时,为了美观,欲将客房的窗户设计成半径为1m的圆形,并用四根木条将圆分成如图所示的9个区域,其中四边形ABCD为中心在圆心的矩形,现计划将矩形ABCD区域设计为可推拉的窗口.

(1)若窗口ABCD为正方形,且面积大于 m2(木条宽度忽略不计),求四根木条总长的取值范围;
(2)若四根木条总长为6m,求窗口ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场在国庆黄金周的促销活动中,对10月1日9时至14时的销售额进行统计,其频率分布直方图如图所示.已知9时至10时的销售额为3万元,则11时至12时的销售额为万元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校1800名学生在一次百米测试中,成绩全部介于13秒与18秒之间,抽取其中50名学生组成一个样本,将测试结果按如下方式分成五组:第一组,第二组……,第五组,如图是按上述分组方法得到的频率分布直方图.

(1)请估计学校1800名学生中,成绩属于第四组的人数;

(2)若成绩小于15秒认为良好,求该样本中在这次百米测试中成绩良好的人数;

(3)请根据频率分布直方图,求样本数据的众数、平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的直角坐标方程为曲线的方程为现建立以为极点轴的正半轴为极轴的极坐标系

(1)写出直线极坐标方程曲线的参数方程

(2)过点平行于直线的直线与曲线交于两点,若求点轨迹的直角坐标方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某茶楼有四类茶饮,假设为顾客准备泡茶工具所需的时间互相独立,且都是整数分钟,经统计以往为100位顾客准备泡茶工具所需的时间(t),结果如下:

类别

铁观音

龙井

金骏眉

大红袍

顾客数(人)

20

30

40

10

时间t(分钟/人)

2

3

4

6

注:服务员在准备泡茶工具时的间隔时间忽略不计,并将频率视为概率.
(1)求服务员恰好在第6分钟开始准备第三位顾客的泡茶工具的概率;
(2)用X表示至第4分钟末已准备好了工具的顾客人数,求X的分布列及数学期望.

查看答案和解析>>

同步练习册答案