精英家教网 > 高中数学 > 题目详情

【题目】今年冬天流感盛行,据医务室统计,北校近30天每天因病请假人数依次构成数列 ,已知 ,且 ,则这30天因病请假的人数共有人.

【答案】
【解析】∵a1=1,a2=2,且an+2-an=1+(-1)n (n∈N*),
∴a3-a1=1+(-1)1=0,
∴a3=a1=1,
∴a4-a2=1+(-1)2=2,解得a4=a2+2=4;
同理可得,a29=a27=…=a3=a1=1;
a6=6,a8=8,…,a30=30,
显然,a2、a4、…、a30构成以2为首项,2为公差的等差数列,共15项,
∴这30天因病请假的人数共有:
S30=(a1+a3+…+a29)+(a2+a4+…+a30)=15+
故答案为:255
根据数列的递推式先求出前几项的值,观察规律:n为奇数时,an为1;n为偶数时,an是以2为首项,2为公差的等差数列,最后根据等差数列的前n项和共和即可求出结果。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合A={x|(x﹣2)(x+3)<0},B={x|y= },则A∩(RB)=(
A.[﹣3,﹣1]
B.(﹣3,﹣1]
C.(﹣3,﹣1)
D.[﹣1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列 有无穷项,且每一项均为自然数,若75,99,235为 中的项,则下列自然数中一定是 中的项的是( )
A.2017
B.2019
C.2021
D.2023

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,直线 与抛物线 交于 两点,与 轴交于点 ,且

(1)求证:点 的坐标为
(2)求证:
(3)求 面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正四棱锥 中, 为顶点 在底面的射影, 为侧棱 的中点,且 ,则直线 与平面 所成的角是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的右焦点为 ,且点 在椭圆 上.
(1)求椭圆 的标准方程;
(2)过椭圆 上异于其顶点的任意一点 作圆 的两条切线,切点分别为 不在坐标轴上),若直线 轴, 轴上的截距分别为 ,证明: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设 为等比数列, 为等差数列,且 = = ,若 是1,1,2,…,求
(1)数列 的通项公式
(2)数列 的前10项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆 的经过中心的弦称为椭圆的一条直径,平行于该直径的所有弦的中点的轨迹为一条线段,称为该直径的共轭直径,已知椭圆的方程为 .

(1)若一条直径的斜率为 ,求该直径的共轭直径所在的直线方程;
(2)若椭圆的两条共轭直径为 ,它们的斜率分别为 ,证明:四边形 的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一块半径为的正常数)的半圆形空地,开发商计划征地建一个矩形的游泳池和其附属设施,附属设施占地形状是等腰,其中为圆心, 在圆的直径上, 在半圆周上,如图.

(1)设,征地面积为,求的表达式,并写出定义域;

(2)当满足取得最大值时,开发效果最佳,求出开发效果最佳的角的值,

求出的最大值.

查看答案和解析>>

同步练习册答案