精英家教网 > 高中数学 > 题目详情

【题目】数列的前项和记为 ,点在直线上,

(1)求数列的通项公式;

(2)设 是数列的前项和,求

【答案】(1);(2).

【解析】试题分析:(1)在直线上可得 ,所以,两式相减得为等比数列,从而得出的通项公式;(2)求出利用分组求和法以及等差数列的求和公式与等比数列的求和公式可得出.

试题解析:(1)由题知,所以,两式相减得

,又

所以是以1为首项,4为公比的等比数列.

(2)

所以 .

【方法点晴】本题主要考查等比数列的定义与通项、等差数列的求和公式与等比数列的求和公式以及利用“分组求和法”求数列前项和,属于中档题. 利用“分组求和法”求数列前项和常见类型有两种:一是通项为两个公比不相等的等比数列的和或差,可以分别用等比数列求和后再相加减;二是通项为一个等差数列和一个等比数列的和或差,可以分别用等差数列求和、等比数列求和后再相加减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列满足,设

1)求

2)判断数列是否为等比数列,并说明理由;

3)求的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一条光线经过P(2,3),射在直线l:xy10,反射后穿过点Q(1,1).

(1)求入射光线的方程;

(2)求这条光线从PQ的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,平面平面,侧面是边长为的等边三角形,底面是矩形,且,则该四棱锥外接球的表面积等于__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列的前项和记为 ,点在直线上,

(1)求数列的通项公式;

(2)设 是数列的前项和,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若对任意的 恒成立,求实数的最小值.

(2)若 且关于的方程 上恰有两个不相等的实数根,求实数 的取值范围;

(3)设各项为正的数列 满足: 求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知具有相关关系的两个变量之间的几组数据如下表所示:

(1)请根据上表数据在网格纸中绘制散点图;

(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程,并估计当时, 的值;

(3)将表格中的数据看作五个点的坐标,则从这五个点中随机抽取2个点,求这两个点都在直线的右下方的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:三棱锥中,侧面垂直底面, 是底面最长的边;图1是三棱锥的三视图,其中的侧视图和俯视图均为直角三角形;图2是用斜二测画法画出的三棱锥的直观图的一部分,其中点平面内.

Ⅰ)请在图2中将三棱锥的直观图补充完整并指出三棱锥的哪些面是直角三角形;

Ⅱ)设二面角的大小为,求的值;

求点到面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图像如图所示,则下列结论中一定成立的是(  )

A. 函数f(x)有极大值f(2)和极小值f(1) B. 函数f(x)有极大值f(-2)和极小值f(1)

C. 函数f(x)有极大值f(2)和极小值f(-2) D. 函数f(x)有极大值f(-2)和极小值f(2)

查看答案和解析>>

同步练习册答案