精英家教网 > 高中数学 > 题目详情

【题目】已知A、B、C三个箱子中各装有2个完全相同的球,每个箱子里的球,有一个球标着号码1,另一个球标着号码2.现从A、B、C三个箱子中各摸出1个球. (I)若用数组(x,y,z)中的x、y、z分别表示从A、B、C三个箱子中摸出的球的号码,请写出数组(x,y,z)的所有情形,并回答一共有多少种;
(Ⅱ)如果请您猜测摸出的这三个球的号码之和,猜中有奖.那么猜什么数获奖的可能性最大?请说明理由.

【答案】解:(Ⅰ)数组(x,y,z)的所有情形为: (1,1,1),(1,1,2),(1,2,1),(1,2,2),(2,1,1),(2,1,2),(2,2,1),(2,2,2),共8种.
答:一共有8种.
(Ⅱ)记“所摸出的三个球号码之和为i”为事件Ai(i=3,4,5,6),
∵事件A3包含有1个基本事件,
事件A4包含有3个基本事件,
事件A5包含有3个基本事件,
事件A6包含有1个基本事件,
所以,
故所摸出的两球号码之和为4、为5的概率相等且最大.
答:猜4或5获奖的可能性最大
【解析】(Ⅰ)数组(x,y,z)的所有情形为:(1,1,1),(1,1,2),(1,2,1),(1,2,2),(2,1,1),(2,1,2),(2,2,1),(2,2,2),共8种.(Ⅱ)记“所摸出的三个球号码之和为i”为事件Ai(i=3,4,5,6),所以事件A3包含有1个基本事件,事件A4包含有3个基本事件,事件A5包含有3个基本事件,事件A6包含有1个基本事件,由此知所摸出的两球号码之和为4、为5的概率相等且最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,E,F分别是A1B,A1C的中点,点D在B1C1上,A1D⊥B1C.求证:

(1)EF∥平面ABC;
(2)平面A1FD⊥平面BB1C1C.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】试分别用综合法、分析法、反证法等三种方法,证明下列结论:已知0<a<1,则 + ≥9.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的极坐标方程为,曲线的参数方程为,( 为参数).

(1)将两曲线化成普通坐标方程;

(2)求两曲线的公共弦长及公共弦所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是2012年在某大学自主招生考试的面试中,七位评委为某考生打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为(

7

9

8

4

4

6

4

7

9

3


A.84,4.84
B.84,1.6
C.85,1.6
D.85,4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某连锁经营公司所属5个零售店某月的销售额和利润额资料如表:

商店名称

A

B

C

D

E

销售额x/千万元

3

5

6

7

9

利润额y/百万元

2

3

3

4

5


(1)画出销售额和利润额的散点图;
(2)若销售额和利润额具有相关关系,用最小二乘法计算利润额y对销售额x的回归直线方程;
(3)据(2)的结果估计当销售额为1亿元时的利润额.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为选拔参加“央视猜灯谜大赛”的队员,在校内组织猜灯谜竞赛.规定:第一阶段知识测试成绩不小于分的学生进入第二阶段比赛.现有名学生参加知识测试,并将所有测试成绩绘制成如下所示的频率分布直方图.

(1)估算这名学生测试成绩的中位数,并求进入第二阶段比赛的学生人数;

(2)将进入第二阶段的学生分成若干队进行比赛.现甲、乙两队在比赛中均已获得分,进入最后强答阶段.抢答规则:抢到的队每次需猜条谜语,猜对条得分,猜错条扣分.根据经验,甲队猜对每条谜语的概率均为,乙队猜对每条谜语的概率均为,猜对第条的概率均为.若这两条抢到答题的机会均等,您做为场外观众想支持这两队中的优胜队,会把支持票投给哪队?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,几何体EFABCD中,CDEF为边长为2的正方形,ABCD为直角梯形,ABCDADDCAD=2AB=4ADF=90°

求证:ACFB

求二面角EFBC的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设m∈R,复数z=(m2﹣3m﹣4)+(m2+3m﹣28)i,其中i为虚数单位.
(1)当m为何值时,复数z是虚数?
(2)当m为何值时,复数z是纯虚数?
(3)当m为何值时,复数z所对应的点在复平面内位于第四象限?

查看答案和解析>>

同步练习册答案