精英家教网 > 高中数学 > 题目详情

【题目】如图,为信号源点,是三个居民区,已知都在的正东方向上,的北偏西45°方向上,,现要经过点铺设一条总光缆直线在直线的上方),并从分别铺设三条最短分支光缆连接到总光缆,假设铺设每条分支光缆的费用与其长度的平方成正比,比例系数为1/,设,(),铺设三条分支光缆的总费用为(元).

1)求关于的函数表达式;

2)求的最小值及此时的值.

【答案】1;(2.

【解析】

(1)对直线的斜率是否存在分类讨论,求出三点到直线的距离,铺设三条分光缆的总费用即可求关于的函数表达式;
(2)由(1)中的表达式利用换元法,利用基本不等式,可求的最小值及此时的值.

(1) 以点位坐标原点,轴建立直角坐标系,

当直线的斜率不存在,即时,

三点到直线的距离分别为10205

所以此时=,

当直线的斜率存在时,设直线的方程为:,

三点到直线的距离分别为:

所以

.

所以

(2) 当直线的斜率不存在时,=,

当直线的斜率存在时,

时,=.

时,.

因为当(当且仅当时取等号)

, (当且仅当时取等号)

所以的最小值为

此时.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若实数x,y满足x2-4xy+4y2+4x2y2=4,则当x+2y取得最大值时,的值为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知在长方体中,,点上的一个动点,平面与棱交于点,给出下列命题:

①四棱锥的体积为

②存在唯一的点,使截面四边形的周长取得最小值

③当点不与重合时,在棱上均存在点,使得平面

④存在唯一一点,使得平面,且

其中正确的命题是_____________(填写所有正确的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线为参数),将曲线上所有点横坐标缩短为原来的,纵坐标不变,得到曲线,过点且倾斜角为的直线与曲线交于两点.

1)求曲线的参数方程和的取值范围;

2)求中点的轨迹的参数方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

1)讨论的单调区间;

2)当时,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

)讨论的单调性;

)若有两个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,圆,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.

1)求曲线C的方程;

2)设不经过点的直线l与曲线C相交于AB两点,直线QA与直线QB的斜率均存在且斜率之和为-2,证明:直线l过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】商家通常依据乐观系数准则确定商品销售价格,及根据商品的最低销售限价a,最高销售限价bba)以及常数x0x1)确定实际销售价格c=a+xb﹣a),这里,x被称为乐观系数.

经验表明,最佳乐观系数x恰好使得(c﹣a)是(b﹣c)和(b﹣a)的等比中项,据此可得,最佳乐观系数x的值等于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《九章算术》中有这样一些数学用语,堑堵意指底面为直角三角形,且侧棱垂直于底面的三棱柱,而阳马指底面为矩形,且有一侧棱垂直于底面的四棱锥.现有一如图所示的堑堵,,若,当阳马体积最大时,则堑堵的外接球体积为(

A.B.C.D.

查看答案和解析>>

同步练习册答案