精英家教网 > 高中数学 > 题目详情
16.已知空间单位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{3}}$,$\overrightarrow{{e}_{1}}$⊥$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{2}}$⊥$\overrightarrow{{e}_{3}}$,$\overrightarrow{{e}_{1}}$•$\overrightarrow{{e}_{3}}$=$\frac{4}{5}$,若空间向量$\overrightarrow{m}$=x$\overrightarrow{{e}_{1}}$+y$\overrightarrow{{e}_{2}}$+z$\overrightarrow{{e}_{3}}$满足:$\overrightarrow{m}$•$\overrightarrow{{e}_{1}}$=4,$\overrightarrow{m}$•$\overrightarrow{{e}_{2}}$=3,$\overrightarrow{m}$•$\overrightarrow{{e}_{3}}$=5,则x+y+z=$\frac{208}{25}$,|$\overrightarrow{m}$|=$\frac{\sqrt{15874}}{25}$.

分析 由已和条件列出方程组,利用向量垂直的性质能求出结果.

解答 解:∵空间单位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{3}}$,$\overrightarrow{{e}_{1}}$⊥$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{2}}$⊥$\overrightarrow{{e}_{3}}$,$\overrightarrow{{e}_{1}}$•$\overrightarrow{{e}_{3}}$=$\frac{4}{5}$,
空间向量$\overrightarrow{m}$=x$\overrightarrow{{e}_{1}}$+y$\overrightarrow{{e}_{2}}$+z$\overrightarrow{{e}_{3}}$满足:$\overrightarrow{m}$•$\overrightarrow{{e}_{1}}$=4,$\overrightarrow{m}$•$\overrightarrow{{e}_{2}}$=3,$\overrightarrow{m}$•$\overrightarrow{{e}_{3}}$=5,
∴$\left\{\begin{array}{l}{(x\overrightarrow{{e}_{1}}+y\overrightarrow{{e}_{2}}+z\overrightarrow{{e}_{3}})•\overrightarrow{{e}_{1}}=4}\\{(x\overrightarrow{{e}_{1}}+y\overrightarrow{{e}_{2}}+z\overrightarrow{{e}_{3}})•\overrightarrow{{e}_{2}}=3}\\{(x\overrightarrow{{e}_{1}}+y\overrightarrow{{e}_{2}}+z\overrightarrow{{e}_{3}})•\overrightarrow{{e}_{3}}=5}\end{array}\right.$,
∴$\left\{\begin{array}{l}{x+\frac{4}{5}y=4}\\{y=3}\\{\frac{4}{5}x+z=5}\end{array}\right.$,解得$x=\frac{8}{5},y=3,z=\frac{93}{25}$,
∴x+y+z=$\frac{8}{5}+3+\frac{93}{25}$=$\frac{208}{25}$.
|$\overrightarrow{m}$|=$\sqrt{\frac{64}{25}+9+\frac{8649}{625}}$=$\frac{\sqrt{15874}}{25}$.
故答案为:$\frac{208}{25}$,$\frac{\sqrt{15874}}{25}$.

点评 本题考查代数式的值的求法,考查向量的模的求法,是基础题,解题时要认真审题,注意向量垂直的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.等比数列{an}的各项均为正数,且2a1+3a2=1,a3=3$\sqrt{{a}_{2}{a}_{6}}$.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设Sn为数列{an}的前n项和,bn=$\frac{{S}_{n+1}-{S}_{n}}{{S}_{n}{S}_{n+1}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知x>9,函数y=$\sqrt{x}$+$\frac{1}{\sqrt{x}-3}$的最小值是5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.由抛物线y=x2-1,直线x=2,x=0,y=0,所围成图形的面积是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,是函数y=f(x)=sin(ω1x+φ1)和y=g(x)=sin(ω2x+φ2)在一个周期上的图象,为了得到y=f(x)的图象,只要将y=g(x)的图象上所有的点(  )
A.向左平移$\frac{π}{3}$个单位长度.再把所得点的横坐标伸长到原来的2倍.纵坐标不变
B.向左平移$\frac{π}{3}$个单位长度.再把所得点的横坐标缩短到原来的$\frac{1}{2}$倍.纵坐标不变
C.向左平移$\frac{π}{2}$个单位长度.再把所得点的横坐标伸长到原来的2倍.纵坐标不变
D.向左平移$\frac{π}{2}$个单位长度.再把所得点的横坐标缩短到原来的$\frac{1}{2}$倍.纵坐标不变

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=$\frac{1-x}{1+x}$的值域为{f(x)|f(x)≠-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在半径为R的球内放入5个球,其中有4个球大小相等,两两相外切且均与大球相内切,另一个小球与这四个球均相外切,则这个小球半径为(  )
A.(3-2$\sqrt{2}$)RB.(4-2$\sqrt{3}$)RC.(5-2$\sqrt{6}$)RD.(6-2$\sqrt{7}$)R

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.半径为2cm,圆心角为120°的扇形面积为$\frac{4π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=cos(x-$\frac{π}{3}$),x∈[0,$\frac{π}{2}$]的值域是[$\frac{1}{2}$,1].

查看答案和解析>>

同步练习册答案