精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.

(1)求到平面的距离

(2)在线段上是否存在一点,使?若存在,求出的值;若不存在,说明理由.

【答案】(I)(II)见解析.

【解析】试题分析:

(1)利用等体积法结合题意可求得到平面的距离为

(2)时满足题意,利用题中所给的条件进行证明即可.

试题解析:

解:(1)方法一:因为平面 ,又,

所以平面,又,所以到平面的距离为.

方法二:等积法求高.

(2)解:在线段上存在一点,使平面

下面给出证明:设为线段上的一点,且,

过点交于点,则,

因为平面 平面

所以,又,所以,

所以四边形是平行四边形,

所以,又平面, 平面

所以平面.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】,角对的边分别为.

(1)若

(2)若面积为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集U=R,A={x|x2﹣2x﹣3≤0},B={x|2≤x<5},C={x|x>a}.

(1)求A∩(UB);

(2)若A∪C=C,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C的一个焦点为,对应于这个焦点的准线方程为

(1)写出抛物线C的方程;

(2)过F点的直线与曲线C交于A、B两点,O点为坐标原点,求△AOB重心G的轨迹方程;

(3)点P是抛物线C上的动点,过点P作圆的切线,切点分别是M,N.当P点在何处时,|MN|的值最小?求出|MN|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程是为参数),以为极点, 轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为,且直线与曲线交于两点.

(Ⅰ)求曲线的直角坐标方程及直线恒过的定点的坐标;

(Ⅱ)在(Ⅰ)的条件下,若,求直线的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=lg(ax﹣bx),且f(1)=lg2,f(2)=lg12

(1)求a,b的值.

(2)当x∈[1,2]时,求f(x)的最大值.

(3)m为何值时,函数g(x)=ax的图象与h(x)=bx﹣m的图象恒有两个交点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形为菱形,四边形为平行四边形,设相交于点

1)证明:平面平面

2)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,曲线处的切线方程为

(Ⅰ)求的解析式;

(Ⅱ)若对恒有成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2015高考广东,文19】设数列的前项和为.已知,且当

时,

(1)求的值;

(2)证明:为等比数列;

(3)求数列的通项公式.

查看答案和解析>>

同步练习册答案